

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6211 of 30/08/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	Product Area Code: 33
	Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR
Product family to which the construction product belongs:	Mechanical fasteners for use in concrete
Manufacturer:	MKT-Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach Germany
Manufacturing plant(s):	MKT-Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach Germany
This UK Technical Assessment contains:	23 pages including 3 annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-00-0601: <i>Mechanical fasteners</i> for use in concrete

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1 Technical description of the product

The Wedge anchor BZ3 / BZ3 A4 / BZ3 HCR is a fastener manufactured of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B3, C1, C2
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C3
Characteristic resistance for seismic performance categories C1 and C2	see Annex C4
Displacements	see Annex C7, C8
Durability	Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	Annex C5, C6

3.3 Hygiene, health and the environment (BWR 3)

Not relevant

3.4 Safety and accessibility in use (BWR 4)

Not relevant

3.5 Protection against noise (BWR 5)

Not relevant

3.6 Energy economy and heat retention (BWR 6)

Not relevant

3.7 Sustainable use of natural resources (BWR 7)

Performance not assessed

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

According to UKAD No. 330232-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

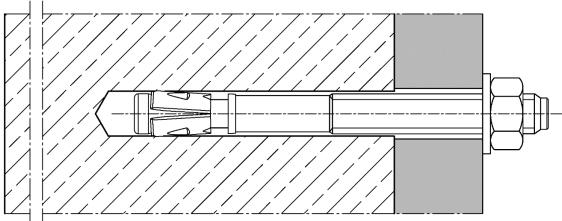
5.1 UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.

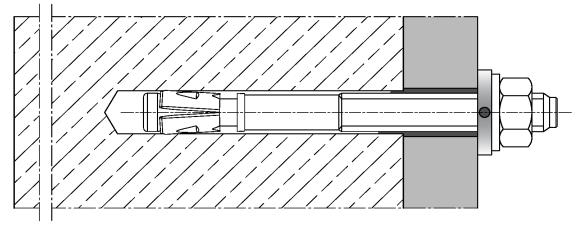
On behalf of the British Board of Agrément

Date of Issue: 30 August 2022

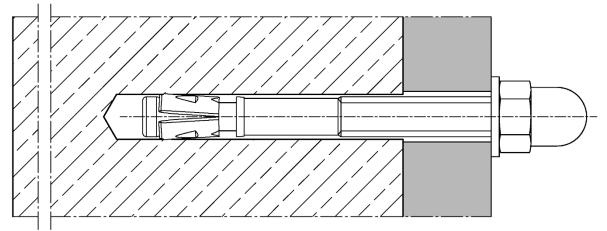
Hardy Giesler Chief Executive Officer



British Board of Agrément, 1st Floor Building 3, Hatters Lane, **Croxley Park** Watford WD18 8YG


ANNEX A1 Product description / Product types and installation conditions

Wedge anchor BZ3, BZ3 A4 and BZ3 HCR


Installation condition

Installation condition with filling washer (optional with cap nut)

Installation condition with cap nut HM (optional with filling washer)

ANNEX A2 Product description / Marking

Marking e.g.: 🔿 BZ3 15 Identifying mark of manufacturing plant BZ3 fastener identity 15 max. thickness of fixture t_{fix,max} for h_{ef,min} A4 additional marking for stainless steel HCR additional marking for high corrosion resistant steel M10 Length Optional: marking of Marking: embedment depth h_{ef,min} M10 Anchor size identifier В

Usable length: $\mathbf{B} = \mathbf{h}_{ef} + \mathbf{t}_{fix}$

hef: (existing) effective anchorage depth

t_{fix}: fixture thickness (including e.g. levelling layers or other non-load-bearing layers or additional filling washer)

Length identifier	Α	В	С	D	Е	F	G	Н	I	J	κ	L	М	Ν	0
Usable ≥ length B	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105

Length identifier	Ρ	Q	R	S	Т	U	V	W	X	Y	Ζ	AA	BB	СС	DD
Usable length B ≥	110	115	120	125	130	135	140	145	150	160	170	180	190	200	210

Length identifier	EE	FF	GG	HH	II	JJ	KK	LL	
Usable ≥ length B	220	230	240	250	260	270	280	290	Dimensions in mm

Page 6 of 23 of UK Technical Assessment UKTA-0836-22/6211

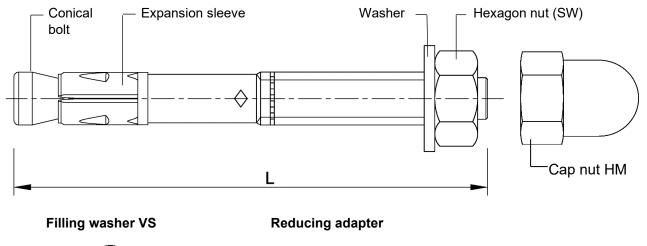

ANNEX A3 Product description / Dimensions and material

Table A2: Material

	BZ3	BZ3 A4	BZ3 HCR		
Part	Steel, zinc plated	Stainless steel CRC III	High corrosion resistant steel CRC V		
Conical bolt	Steel, galvanized ≥ 5 μm, fracture elongation A₅ ≥ 8%	Stainless steel, fracture elongation $A_5 \ge 8\%$	High corrosion resistant steel, fracture elongation $A_5 \ge 8\%$		
Expansion sleeve	Stainless steel	Stainless steel	Stainless steel		
Washer					
Filling washer	Steel, galvanized		High corrosion resistant		
Hexagon nut	≥ 5 µm	Stainless steel	steel		
Cap nut					

Table A3: Fastener dimensions

Fastener size			BZ3 / BZ3 A4 / BZ3 HCR							
			M8	M10	M12	M16				
Width across hexagon nut / cap nut	SW	[mm]	13	17	19	24				
Length of fastener	L	[mm]	h _{ef} + t _{fix} + 18.0	h _{ef} + t _{fix} + 21.5	h _{ef} + t _{fix} + 26.0	h _{ef} + t _{fix} + 33.0				
Thickness of filling washer	t	[mm]		Į	5					

ANNEX B1 Intended Use / Specifications

Wedge Ancher	BZ3 / BZ3 A4 / BZ3 HCR								
Wedge Anchor	M8	M10	M12	M16					
Static or quasi-static action	tic action 🗸								
Seismic performance categories C1 and C2	✓								
Fire exposure		R30 / R60 /	R90 / R120						
Variable, effective anchorage depth	35 mm to 90 mm	40 mm to 100 mm	50 mm to 125 mm	65 mm to 160 mm					

Base materials:

- Cracked or uncracked concrete
- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

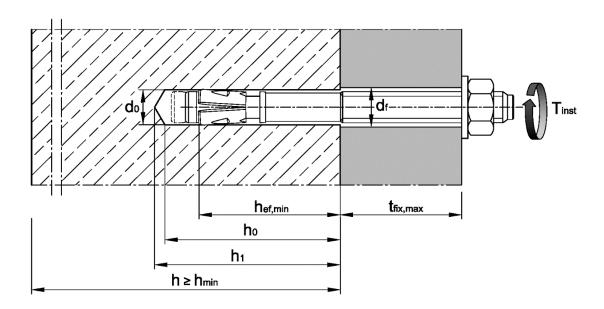
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions according to EN 1993-1-2006 + A1:2015-10, corresponding to corrosion resistance classes CRC according to Annex A3, Table A2.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
- The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design method EN 1992-4:2018 and Technical Report TR 055:2018

Installation:


- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener (exception: when using the cap nut HM)
- The anchor can be set in pre- or through-setting installation.
- Optionally, the annular gap between fixture and stud of BZ3 can be filled to reduce the hole clearance. For this purpose, the filling washer (Annex A3) must be used in addition to the supplied washer. For filling use MKT Injection Adhesive VMH, VMU plus, VMZ or other high-strength injection mortar with compressive strength ≥ 40N/mm².

ANNEX B2 Intended Use / Installation parameters

Table B1: Installation parameters

					BZ3 / BZ3 A	4 / BZ3 HCR	
Anchor size				M8	M10	M12	M16
Nominal drill hole diameter		do	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{\text{cut}} \leq$	[mm]	8.45	10.45	12.5	16.5
Minimum effective anchorage depth		h _{ef,min}	[mm]	35	40	50	65
Maximum effective anchorage depth		h _{ef,max}	[mm]	90	100	125	160
		h₀≥	[mm]	h _{ef} + 8	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14
Depth of drill hole		h₁≥	[mm]	h _{ef} + 10	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17
Diameter of clearance hole	in the fixture ¹⁾	$d_{\rm f} \leq$	[mm]	9	12	14	18
Projection after anchor has been inserted for installing with cap nut HM (according to Annex B6, Figure 3)		С	[mm]	10.5	12.5	16.0	19.5
BZ3		Tinst	[Nm]	15	40	60	110
Installation torque	BZ3 A4 / HCR	Tinst	[Nm]	15	40	55	100

¹⁾ For larger diameters of clearance hole in the fixture, see EN 1992-4:2018, chapter 6.2.2.2

ANNEX B3

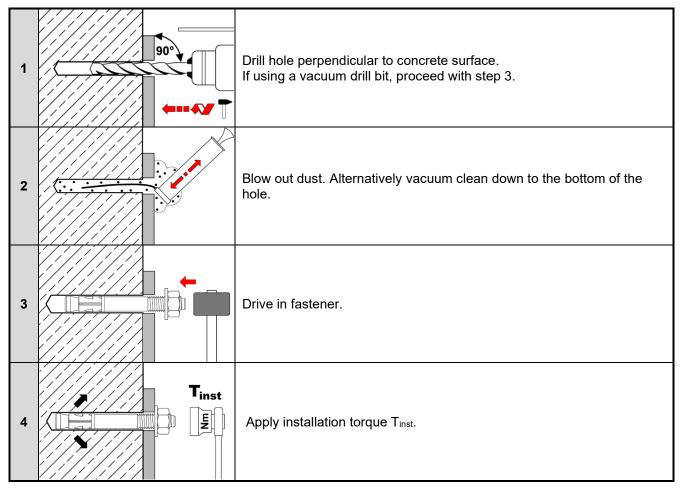
Intended Use / Minimum spacing and edge distances / Required area and applicable concrete thickness

Anchor size				BZ3 / BZ3 A	4 / BZ3 HCR				
Anchor size			M8	M10	M12	M16			
Minimum member thickness depending on h _{ef}	h _{min} ≥ [mm]		max (1.5∙h _{ef} ;80)		max (1.5∙h _{ef} ;100)	max (1.5∙h _{ef} ;120)			
Minimum edge distances and spacings									
Minimum edge distance	C _{min}	[mm]	nm] 40 45		55	65			
	for s ≥	[mm]		see Table B4					
Minimum anaginga	S _{min}	[mm]	35	40	50	65			
Minimum spacings	for c ≥	[mm]	see Table B4						
The following equation must be fulfilled for installation in combination with variable a					edge distance	aduring			
$A_{sp,req} \leq A_{sp,ef}$									
Required splitting area $A_{\mbox{\scriptsize sp,req}}$ and idealized s	splitting ar	ea A _{sp,ef}	according to Ta	able B4.					

Table B2: Minimum thickness of concrete member, minimum spacings, edge distances

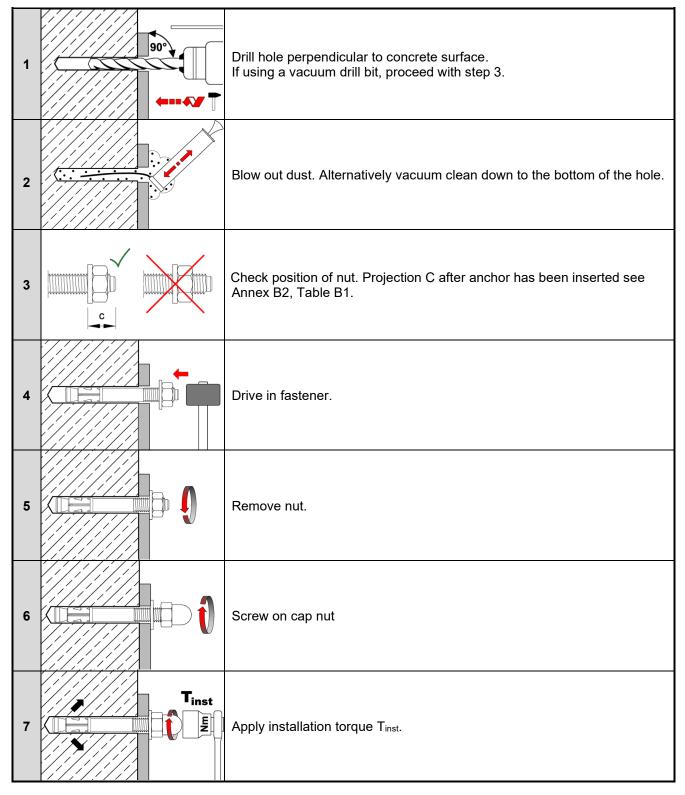
Table B3: Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance $c_{cr,sp}$

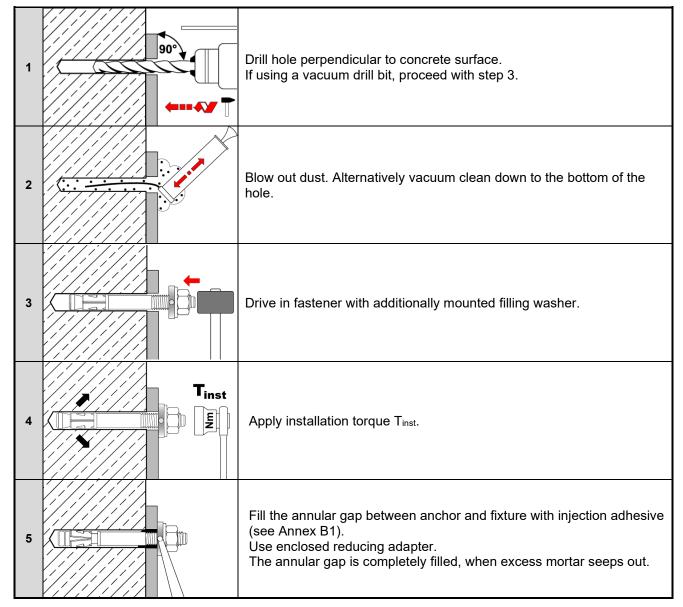
Anchor size				M8	M10	M12	M16
Applicable concrete thickness	BZ3 BZ3 A4 BZ3 HCR	h _{sp}	[mm]		$\min(h; h_{ef})$	+ $1.5 \cdot c \cdot \sqrt{2}$)	
BZ3 A _{sp} [mm Area to determine		[mm²]	$\frac{N_{Rk,sp}^0 - 2.573}{0.000436}$	$\frac{N_{Rk,sp}^0 + 2.040}{0.000693}$	$\frac{N_{Rk,sp}^0 + 3.685}{0.000692}$	$\frac{N_{Rk,sp}^0 + 3.738}{0.000875}$	
C _{cr,sp} ¹⁾	BZ3 A4 BZ3 HCR	A_{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 4.177}{0.000862}$	$\frac{N_{Rk,sp}^0 + 7.235}{0.000967}$	$\frac{N_{Rk,sp}^0 + 7.847}{0.000951}$	$\frac{N_{Rk,sp}^0 + 11.415}{0.000742}$


 $^{1)}$ with $N^{0}_{\mbox{\scriptsize Rk,sp}}$ in kN

				BZ3 / BZ3 A	4 / BZ3 HCR			
Anchor size			M8	M10	M12	M16		
The following equation must be full during installation in combination v						e distance		
		A _{sp,req} ≤	A _{sp,ef}					
Idealized splitting area A _{sp,ef} The edge distances and spacings sha	ll be selec	ted or rou	inded in steps	of 5 mm.				
Member thickness: $h > h_{ef} + 1.5$								
Single anchor or anchor group with s			l					
Effective anchorage depth	h _{ef} < 1.5 ⋅		$A_{sp.ef} = ($	6·c) · (1.5·c +	h _{ef})	[mm²]		
Effective anchorage depth	h _{ef} ≥ 1.5 ·	С	$A_{sp.ef} = (6 \cdot c) \cdot (3 \cdot c) \qquad [mn]$					
Anchor group (s < 3⋅c)								
Effective anchorage depth	h _{ef} < 1.5 ⋅	С	$A_{sp.ef}$ =	(3·c + s) · (1.5	5∙c + h _{ef})	[mm²]		
Effective anchorage depth	h _{ef} ≥ 1.5 ·	C	A _{sp.ef} =	(3·c + s) · (3·c	c)	[mm²]		
Member thickness: $h \le h_{ef} + 1.5$	с		-			-		
Single anchor or anchor group with s	≥ 3·c							
Effective anchorage depth	h _{ef} < 1.5 ·	С	A _{sp.ef} = (6•c) • h		[mm²]		
Effective anchorage depth	h _{ef} ≥ 1.5 ·	С	A _{sp.ef} = (6•c) • (h - h _{ef} +	+ 1.5 · c)	[mm²]		
Anchor group (s < $3 \cdot c$)								
Effective anchorage depth	h _{ef} < 1.5 ·	C	A _{sp.ef} = (3•c + s) • h		[mm²]		
Effective anchorage depth	h _{ef} ≥ 1.5 ·	C	A _{sp.ef} = (3•c + s) • (h -	h _{ef} + 1.5∙c)	[mm²]		
Required splitting area A _{sp,req}			•			-		
cracked concrete	A _{sp,req}	[mm²]	13 900	23 700	31 500	42 300		
BZ3 uncracked concrete	A _{sp,req}	[mm²]	22 500	34 700	41 300	50 200		
BZ3 A4 cracked concrete	A _{sp,req}	[mm²]	16 900	25 900	29 800	44 300		
BZ3 HCR uncracked concrete	A _{sp,req}	[mm²]	19 700	35 700	35 300	54 800		

Table B4: Areas to determine spacings and edge distances for installation


ANNEX B5 Intended Use / Installation instructions


Installation instructions

ANNEX B6 Intended Use / Installation instructions with cup nut

Installation with cap nut HM

Installation instructions with filling of annular gap

ANNEX C1 Performance / Characteristics values for tensions loads, BZ3 (Steel, zinc plated)

Table C1: Characteristic values for **tension loads** under static and quasi-static action, **BZ3** (steel, zinc plated)

Factoria				B	Z3			
Fastener size			M8	M10	M12	M16		
Installation factor	γinst	[-]		1	.0			
Steel failure		<u>-</u>		-	-	-		
Characteristic resistance	N _{Rk,s}	[kN]	19.8	30.4	44.9	79.3		
Partial factor 4)	γMs	[-]		1	.5	·		
Pull-out								
Characteristic resistance in cracked concrete C20/25	N _{Rk,p,cr}	[kN]	9.5	15	22	30		
Increasing factor N _{Rk,p,cr} = $\psi_{C} \cdot N_{Rk,p,cr}$ (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.439}$	$\left(\frac{f_{ck}}{20}\right)^{0.265}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0.339}$		
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p,ucr}	[kN]	14	24	30	50		
Increasing factor $N_{Rk,p,ucr} = \psi_{C} \cdot N_{Rk,p,ucr}$ (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.489}$	$\left(\frac{f_{ck}}{20}\right)^{0.448}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0.203}$		
Splitting					•	•		
Characteristic resistance	N ⁰ Rk,sp	[kN]		min (N _{Rk,p}	o;N ⁰ Rk,c ³⁾)			
Characteristic edge distance ²⁾	C _{cr,sp}	[mm]		$\frac{A_{sp} + 0.8 \cdot}{(3.41 \cdot h_{sp} - $	$\frac{(h_{sp} - h_{ef})^2}{-0.59 \cdot h_{ef})}$			
Characteristic spacing	Scr,sp	[mm]		2 ·	Ccr,sp			
Concrete cone failure		·						
Minimum, effective anchorage depth	h _{ef,min}	[mm]	35 ¹⁾	40	50	65		
Maximum, effective anchorage depth	h _{ef,max}	[mm]	90	100	125	160		
Characteristic edge distance	C _{cr,N}	[mm]	m] 1.5 · h _{ef}					
Characteristic spacing	S _{cr,N}	[mm]	nm] 2 · c _{cr,N}					
Factor cracked concrete	k _{cr,N}	[-]] 7.7					
uncracked concrete	kucr,N	[-]		11	1.0			

¹⁾ Fastenings with anchorage depth hef < 40mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

²⁾ Applicable concrete thickness hsp and area Asp to determine characteristic edge distance ccr,sp according to Table B3

³⁾ N0Rk,c according to EN 1992-4:2018

⁴⁾ In absence of other national regulations

ANNEX C2 Performance / Characteristics values for tensions loads, BZ3 A4 and BZ3 HCR

Table C2: Characteristic values for **tension loads** under static or quasi-static action, **BZ3 A4** and **BZ3 HCR**

Factorer					BZ3 A4 /	BZ3 HCR		
Fastener si	IZe			M8	M10	M12	M16	
Installation	factor	γinst	[-]		1	.0		
Steel failur	e	-				-	-	
Characteris	tic resistance	N _{Rk,s}	[kN]	19.8	30.4	44.9	74.6	
Partial facto	or ⁴⁾	γMs	[-]		1	.5		
Pull-out		-	_				-	
	tic resistance in ncrete C20/25	N _{Rk,p,cr}	[kN]	9.5	17	22	35	
Increasing f $N_{Rk,p,cr} = \psi_C$	factor • N _{Rk,p,cr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.488}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0.435}$	$\left(\frac{f_{ck}}{20}\right)^{0.350}$	
	tic resistance in concrete C20/25	N _{Rk,p,ucr}	[kN]	20	25	42	50	
Increasing f $N_{Rk,p,ucr} = \psi c$	factor _c • N _{Rk,p,ucr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.240}$	$\left(\frac{f_{ck}}{20}\right)^{0.364}$	$\left(\frac{f_{ck}}{20}\right)^{0.213}$	$\left(\frac{f_{ck}}{20}\right)^{0.196}$	
Splitting		<u>.</u>						
Characteris	tic resistance	N ⁰ Rk,sp	[kN]		min (N _{Rk,p}	」;№ _{Rk,c} ³⁾)		
Characteris	tic edge distance ²⁾	Ccr,sp	[mm]		$\frac{A_{sp} + 0.8 \cdot}{(3.41 \cdot h_{sp} - $	$\frac{(h_{sp}-h_{ef})^2}{-0.59\cdot h_{ef})}$		
Characteris	tic spacing	Scr,sp	[mm]		2 ·	Ccr,sp		
Concrete c	one failure	•						
Minimum, e depth	ffective anchorage	h _{ef,min}	[mm]	35 ¹⁾	40	50	65	
Maximum, e depth	effective anchorage	h _{ef,max}	[mm]	90	100	125	160	
Characteris	tic edge distance	Ccr,N	[mm]	n] 1.5 · h _{ef}				
Characteris	tic spacing	S _{cr,N}	[mm]	m] 2 · c _{cr,N}				
Factor	cracked concrete	k _{cr,N}	[-]	7.7				
i autoi	uncracked concrete	kucr,N	[-]		11	1.0		

¹⁾ Fastenings with anchorage depth hef < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

²⁾ Applicable concrete thickness hsp and area Asp according to Table B3 to determine characteristic edge distance ccr,sp

³⁾ N0Rk,c according to EN 1992-4:2018

⁴⁾ In absence of other national regulations

ANNEX C3 Performance / Characteristics values for shear loads

Factorian					BZ3 / BZ3 A	4 / BZ3 HCF	R
Fastener size				M8	M10	M12	M16
Installation factor		γinst	[-]		1	.0	
Steel failure <u>without</u> lev	ver arm						
Characteristic	BZ3	V ⁰ _{Rk,s}	[kN]	15.7	26.8	38.3	60.0
resistance	BZ3 A4 / HCR	V ⁰ _{Rk,s}	[kN]	16.8	27.8	39.8	69.5
Partial factor 2)		γMs	[-]		1.	.25	
Ductility factor		k 7	[-]		1	.0	
Steel failure with lever	arm						
Characteristic bending	BZ3	M ⁰ Rk,s	[Nm]	30	60	105	240
resistance	BZ3 A4 / HCR	M ⁰ Rk,s	[Nm]	27	55	99	223
Partial factor 2)		γMs	[-]		1.	.25	
Concrete pry-out failure	e						
Dry out footor	BZ3	k ₈	[-]	2.8	3.1	3.0	3.6
Pry-out factor	BZ3 A4 / HCR	k ₈	[-]	2.7	2.8	3.3	3.4
Concrete edge failure							
Effective length of fasten loading	er in shear	lf	[mm] h _{ef} ¹)				
Outside diameter of faste	ener	d_{nom}	[mm]	8	10	12	16

Table C3: Characteristic values for **shear loads** under static and quasi-static action

¹⁾ Fastenings with anchorage depth h_{ef} < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

²⁾ In absence of other national regulations

ANNEX C4 Performance / Characteristics values for seismic loading

Feetenereire						BZ3	BZ3 A	4 / BZ3	HCR		
Fastener size				Ν	18	М	10	м	12	M	16
Effective anche	orage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85
Tension load											
Installation fac	stallation factor γ_{inst} [-] 1.0										
Steel failure											
Characteristic	BZ3	NRk,s,C1	[kN]	19	9.8	30).4	44	1.9	79	.3
resistance	BZ3 A4 / HCR	NRk,s,C1	[kN]	19	9.8	30).4	44	1.9	74	.6
Pull-out				-		-		-		-	
Characteristic	BZ3	NRk,p,C1	[kN]	9	.1	15	5.0	22	2.0	30	.0
resistance	BZ3 A4 / HCR	NRk,p,C1	[kN]	9	.0	17	' .0	22	2.0	35	.0
Shear load											
Steel failure w	vithout lever arm										
Characteristic	BZ3	$V_{Rk,s,C1}$	[kN]	11.7	13.4	22.5	24.4	30.0	33.8	48.8	52.3
resistance	BZ3 A4 / HCR	V _{Rk,s,C1}	[kN]	11.0	12.7	20.6	22.2	33.2	33.2	61.1	64.3
Factor for	with annular gap	$lpha_{gap}$	[-]	0.5							
anchorages	without annular gap	αgap	[-]	1.0							

Table C4: Characteristic values for **seismic loading**, performance category C1

Table C5: Characteristic values for seismic loading, performance category C2

Fastener size						BZ3 /	BZ3 A	4 / BZ3	HCR		
Fastener size				N	18	М	10	М	12	M	16
Effective anchor	rage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85
Tension load											
Installation facto	or	γinst	[-]				1.	.0			
Steel failure											
Characteristic	BZ3	N _{Rk,s,C2}	[kN]	19	9.8	30).4	44	1.9	79	.3
resistance	BZ3 A4 / HCR	N _{Rk,s,C2}	[kN]	19.8		30	30.4		44.9		.6
Pull-out											
Characteristic	BZ3	NRk,p,C2	[kN]	2.8	3.6	7.3	12.5	10.7	19.0	19.8	35.2
resistance	BZ3 A4 / HCR	NRk,p,C2	[kN]	2.3	3.2	5.0	7.7	8.0	13.8	19.0	29.4
Shear load											
Steel failure wi	thout lever arm										
Characteristic	BZ3	$V_{\text{Rk},\text{s},\text{C2}}$	[kN]	7.3	11.3	15.4	19.0	18.3	28.0	39.4	43.3
resistance	BZ3 A4 / HCR	$V_{\text{Rk},\text{s},\text{C2}}$	[kN]	7.5	8.6	12.5	15.9	22.4	25.6	42.7	46.1
Factor for	with annular gap	$lpha_{gap}$. [-] 0.5								
anchorages without annular gap α_{gap}			[-]	1.0							

ANNEX C5 Performance / Characteristics values under fire exposure BZ3 (steel, zinc plated)

Factorian					B	Z3	
Fastener size				M8	M10	M12	M16
Tension load					-	-	-
Steel failure							
	R30	_		1.2	2.6	4.6	7.7
Characteristic resistance	R60	N	FI2N 11	1.0	1.9	3.3	5.6
Characteristic resistance	R90	- N _{Rk,s,fi}	[kN]	0.7	1.3	2.1	3.5
	R120	-		0.6	1.0	1.5	2.5
Shear load	-				<u>.</u>	•	<u>.</u>
Steel failure without leve	er arm		-	-	-	-	-
	R30			4.0	7.5	12.3	20.7
Characteristic resistance	R60		[kNI]	2.7	5.1	8.5	14.2
	R90	- V _{Rk,s,fi}	[kN]	1.4	2.7	4.6	7.7
	R120	_		0.8	1.6	2.7	4.5
Steel failure <u>with</u> lever a	rm						
	R30			4.1	9.6	19.1	43.8
Oh ana ata viatia na aiat	R60	- N 40	[N loss]	2.8	6.6	13.1	30.1
Characteristic resistance	R90	− M ⁰ Rk,s,fi	[Nm]	1.5	3.5	7.2	16.4
	R120	-		0.8	2.0	4.2	9.6

Table C6 Characteristic values for tension and shear load under fire exposure, BZ3 (steel, zinc plated)

 $N_{\text{Rk},\text{p,fi}}$ and $N_{\text{Rk},\text{c,fi}}$ according to EN 1992-4:2018

ANNEX C6 Performance / Characteristic values under fire exposure, BZ3 A4 and BZ3 HCR

Factoreraise					BZ3 A4 /	BZ3 HCR	
Fastener size				M8	M10	M12	M16
Tension load					-		-
Steel failure							
	R30			4.0	6.9	11.0	18.1
Obavastavistis vasistavas	R60	NI	FL-N 11	2.9	5.0	8.0	13.1
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	1.8	3.1	4.9	8.1
	R120			1.2	2.1	3.4	5.6
Shear load		-	-		-		-
Steel failure without leve	er arm						
	R30			8.5	17.6	32.0	52.6
Characteristic resistance	R60		[LN]	6.2	12.6	22.6	37.1
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	3.9	7.5	13.1	21.5
	R120			2.8	5.0	8.4	13.8
Steel failure <u>with</u> lever a	rm						
	R30			8.7	22.7	49.8	111.5
Characteristic resistance	R60	N 40	[Nime]	6.3	16.2	35.1	78.6
	R90	M ⁰ Rk,s,fi	[Nm]	4.0	9.7	20.4	45.6
	R120			2.8	6.5	13.0	29.2

Table C7 Characteristic values for tension and shear load under fire exposure, BZ3 A4 und BZ3 HCR

 $N_{Rk,p,fi}$ and $N_{Rk,c,fi}$ according to EN 1992-4:2018

ANNEX C7 Performance / Displacements under shear load

Francisco						B	Z3			
Fastener size			N	18	М	10	М	12	М	16
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	0	5	0	6	5
Cracked concrete										
Factor for displacement	δ N0-factor	[mm/kN]	0.	13	0.	05	0.	04	0.	03
Factor for displacement –	$\delta_{N^\infty\text{-factor}}$	[mm/kN]	0.	29	0.	20	0.	15	0.	11
Uncracked concrete										
Factor for displacement	δ N0- factor	[mm/kN]	0.	03	0.	01	0.0	04	0.0	005
Factor for displacement	δN∞- factor	[mm/kN]	0.	03	0.	03	0.	03	0.	03
Displacement under seismic	action C2									
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85
Displacements for DLS	δ N, C2(DLS)	[mm]	3.9	4.9	2.8	4.7	2.4	4.2	2.5	4.5
Displacements for ULS	$\delta_{\text{N},\text{ C2(ULS)}}$	[mm]	11.3	14.3	9.4	16.1	7.3	12.9	7.2	12.8

Table C8: Displacements under tension load, BZ3 (steel, zinc plated)

Table C9: Displacements under tension load, BZ3 A4 and BZ3 HCR

F = 4 + + + + + + + + + + + + + + + + + +					B	Z3 A4 /	BZ3 HC	R		
Fastener size			M8 M10 M12 M1						16	
$\begin{array}{l} \textbf{Displacements under static} \\ \delta_{N0} = \delta_{N0\text{-}factor} * N \\ \delta_{N\infty} = \delta_{N\infty\text{-}factor} * N \end{array}$	-	tatic actior cting tension								
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	0	5	0	6	5
Cracked concrete										
Fastar for displacement	δ N0-factor	[mm/kN]	0.11		0.06		0.05		0.02	
Factor for displacement	δN∞-factor	[mm/kN]	0.27		0.17		0.16		0.08	
Uncracked concrete										
Faster for disult company	$\delta_{ m N0-\ factor}$	[mm/kN]	0.	02	0.	00	0.0)01	0.	00
Factor for displacement	δN∞- factor	[mm/kN]	0.	05	0.05		0.05		0.	05
Displacement under seismi	ic action C2	2								
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85
Displacements for DLS	$\delta_{\text{N},\text{ C2(DLS)}}$	[mm]	2.0	2.9	2.6	4.1	3.3	5.7	3.3	5.1
Displacements for ULS	$\delta_{\text{N},\text{ C2(ULS)}}$	[mm]	7.7	11.1	10.8	16.8	10.4	18.0	9.0	13.9

ANNEX C8 Performance / Displacements under tension load

F						B	Z3			
Fastener size			N	18	M10		M12		M16	
Displacements under static $\delta_{V0} = \delta_{V0-factor} * V$ $\delta_{V\infty} = \delta_{V\infty-factor} * V$	•	atic action cting shea								
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	0	5	0	65	
Factor for displacement	δ V0- factor	[mm/kN]	0.	15	0.	09	0.	09	0.	07
Factor for displacement	δ V∞- factor	[mm/kN]	0.	22	0.13		0.	14	0.	11
Displacement under seismic	action C2	1)								
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85
Displacements for DLS	$\delta_{V,C2(DLS)}$	[mm]	2.8	2.7	3.0	3.1	3.4	3.7	3.4	3.8
Displacements for ULS	δ V,C2(ULS)	[mm]	5.1	5.0	5.0	5.5	6.3	9.9	6.0	9.6

Table C10: Displacements under shear load, BZ3 (steel, zinc plated)

¹⁾ For anchorages with clearance in the fixture the annular gap must also be taken into account.

Table C11: Displacements under shear load, BZ3 A4 and BZ3 HCR

Footower circ		BZ3 A4 / BZ3 HCR								
Fastener size			Ν	8	M10		M12		M16	
Displacements under static or quasi-static action $\delta_{V0} = \delta_{V0-factor} * V$ V: acting shear load $\delta_{V\infty} = \delta_{V\infty-factor} * V$										
Effective anchorage depth	h _{ef} ≥	[mm]	35		40		50		65	
Factor for displacement	δ V0- factor	[mm/kN]	0.26		0.14		0.12		0.09	
	δ V∞- factor	[mm/kN]	0.39		0.20		0.17		0.14	
Displacement under seismic action C2 ¹⁾										
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85
Displacements for DLS	δ V,C2(DLS)	[mm]	2.8	3.0	3.4	3.5	3.5	4.2	3.8	4.4
Displacements for ULS	δ V,C2(ULS)	[mm]	5.2	5.1	7.0	8.4	7.5	11.8	7.8	11.1

¹⁾ For anchorages with clearance in the fixture the annular gap must also be taken into account

British Board of Agrément, 1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG