

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0716 of 11 May 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System VMH for concrete

Bonded fastener for use in concrete

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 1, D Werk 2, D

33 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-17/0716 issued on 22 November 2019

European Technical Assessment ETA-17/0716

Page 2 of 33 | 11 May 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z44145.21 8.06.01-76/21

European Technical Assessment ETA-17/0716

Page 3 of 33 | 11 May 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system VMH for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar VMH and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1, C 3, C4, C 5, C 8, C 9, C 11, C 12				
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2, C 6, C 10, C 13				
Displacements under short-term and long-term loading	See Annex C 15 to C 17				
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 7, C 14, C 15				

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z44145.21 8.06.01-76/21

European Technical Assessment ETA-17/0716

Page 4 of 33 | 11 May 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

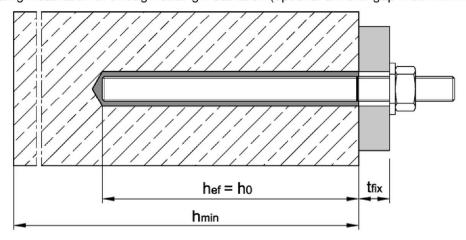
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

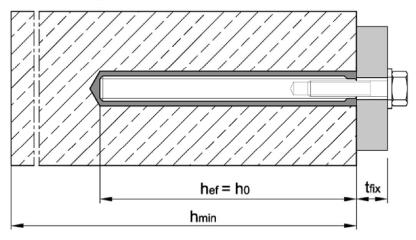
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 11 May 2021 by Deutsches Institut für Bautechnik

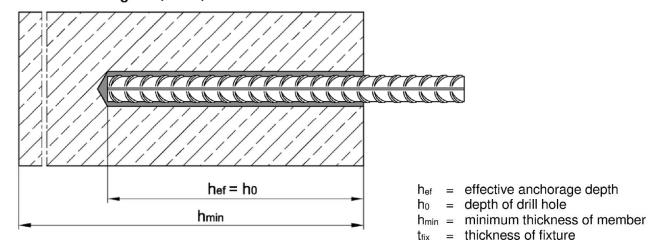
Dipl.-Ing. Beatrix Wittstock Head of Section


*beglaubigt:*Baderschneider

Z44145.21 8.06.01-76/21



Installation threaded rod M8 to M30


Pre-setting installation or through-setting installation (optional annular gap filled with mortar)

Installation internally threaded anchor rod VMU-IG M6 to VMU-IG M20

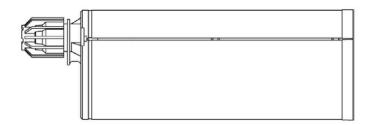
Installation reinforcing bar Ø8 to Ø32

Injection System VMH for concrete

Product description

Installation situation

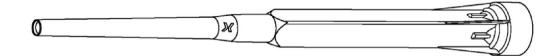
Annex A1



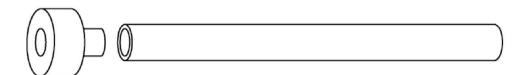
Cartridge Injection Mortar VMH

Coaxial cartridge 150 ml, 280 ml, 300 ml to 330 ml, 380 ml to 420 ml

Side-by-side cartridge 235 ml, 345 ml to 360 ml, 825 ml



Imprint:


VMH.

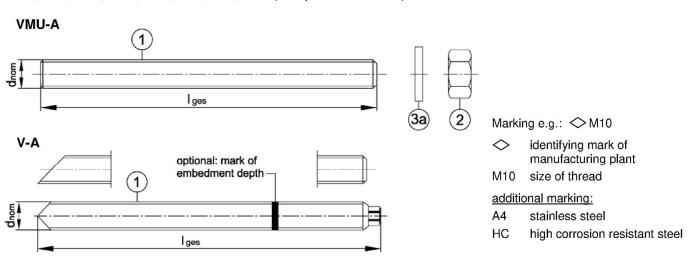
processing notes, batch number, shelf life, hazard code, storage temperature, curing- and processing time (depending on the temperature), optional with travel scale

Static mixer

Retaining washer and extension nozzle

Injection System VMH for concrete

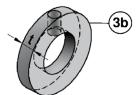
Product description


Cartridge, static mixer and retaining washer

Annex A2

Threaded rod

Threaded rod VMU-A, V-A with washer and hexagon nut M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A4, HCR)


Threaded rod VM-A (material sold by the metre, to be cut at the required length) M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)

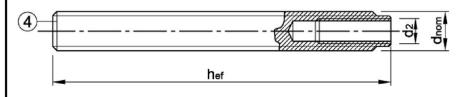
Commercial standard threaded rod with:

M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)

- -Materials, dimensions and mechanical properties see Table A1
- -Inspection certificate 3.1 acc. to EN 10204:2004

Washer with bore and reducing adapter for filling the gap between threaded rod and fixture

Thickness of washer with bore for diameter < M24: t = 5 mm


< M24: t = 5 mm $\ge M24$: t = 6 mm

Internally threaded anchor rod

VMU-IG M6, VMU-IG M8, VMU-IG M10, VMU-IG M12, VMU-IG M16, VMU-IG M20

(zinc plated, A4, HCR)

Marking e.g.: <>> M8

identifying mark of manufacturing plant

I internal thread

M8 size of internal thread

additional marking:

A4 stainless steel

HCR high corrosion resistant steel

Injection System VMH for concrete

Product description

Threaded rod and internally threaded anchor rod

Annex A3

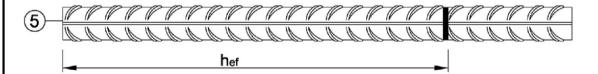


Table A1: Materials - Threaded rod and internally threaded anchor rod											
Part	Designation		Material								
electro hot-di	p galvanized ≥ 40 į	um acc. to E um (50 µm ii um acc. to E	n average)	acc. to E		61:2009	, EN ISO 106	84:2004+AC:2009 or			
		Property class	charac ultimate		characte yield str	fracture elongation	EN ISO 683-4:2018,				
		4.6		400		240	A ₅ > 8 %	EN 10263:2001;			
1	Threaded rod	4.8		400		320	A ₅ > 8 %	Commercial standard			
		5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %	threaded rod:			
		5.8	[[.4/]	500	[(\\/)	400	A ₅ > 8 %	EN ISO 898-1:2013			
		8.8		800		640	A ₅ ≥ 12% ¹⁾				
		4	for class	4.6 or 4.8	rods						
2	Hexagon nut	5	for class	4.6, 4.8, 5	5.6 or 5.8 rd	ds		EN ISO 898-2:2012			
		8	for class	4.6, 4.8, 5	5.6, 5.8 or 8	.8 rods					
3a	Washer		e.g.: EN I EN ISO 8		3:2000, EN I	SO 7094:2000,					
3b	Washer with bore		Steel, zin	c plated							
4	Internally threaded	5.8	Staal ala	ctroplated	d or sherard	hazik	EN ISO 683-4:2018				
4	anchor rod	8.8	Steel, ele	ciropiaiec	i oi sileiaid	A ₅ > 8%	EN 130 663-4.2016				
Stain	less steel A2 ²⁾ less steel A4 corrosion resistant ste		CR(CR	C II (1.43 C III (1.44 C V (1.45	1.4541)						
	_	Property class	charac ultimate		characteristic yield strength		fracture elongation	EN 10088-1:2014			
1	Threaded rod ³⁾	50	٠	500	ا و	210	A ₅ > 8%	EN ISO 3506-1:2020			
	_	70	f _{uk} [N/mm²]	700	f _{yk} [N/mm²]	450	$A_5 \ge 12\%^{1)}$				
		80	[800	[600	$A_5 \ge 12\%^{1)}$				
		50	for class	50 rods				EN 40000 4 0044			
2	Hexagon nut 3)	70	for class	50 or 70 r	EN 10088-1:2014 EN ISO 3506-2:2020						
		80	for class	50, 70 or	211 100 0000 2.2020						
3a	Washer				2000, EN I ; EN ISO 8			EN 10088-1:2014			
3b	Washer with bore		stainless high corro			217 10000 1.2014					
4	Internally threaded	50	IG-M20				A ₅ > 8 %	EN 10088-1:2014			
	anchor rod	70	IG-M6 to	IG-M16	LIN 10000-1.2014						
²⁾ pro	cture elongation A ₅ > 8 % for a perty classes 50 and 70 perty classes 70 and 80 up to		nout requirem	ents for sei	smic performa	ince cate	gory C2				
Inje	ction System VMH fo	or concrete	<u> </u>								
	luct description rials - Threaded rod and		Annex A4								

Reinforcing bar

 \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rip height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Material reinforcing bar

Part	Designation Material							
Rebar								
5	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL acc. EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$						

Injection System VMH for concrete	
Product description Product description and material reinforcing bar	Annex A5

Specification of intended use

Static and quasi-static action	working life 50 years	working life 100 years						
Threaded rod Internally threaded anchor rod Rebar	M8 - M30 VMU-IG M6 - VMU-IG M20 Ø8 - Ø32							
	cracked or uncracked concrete							
Base material	strength classes C20/25 to C50/60 compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013+A1:2016							
Hole drilling	hammer drilling / compressed air drilling / vacuum drilling							
Temperature range 1)	I: -40°C to +40°C II: -40°C to +80°C III: -40°C to +120°C IV: -40°C to +160°C	I: -40°C to +40°C II: -40°C to +80°C						

Seismic action	performance category C1	performance category C2							
Threaded rod Rebar	M8 - M30 Ø8 - Ø32	M12 - M24 							
Base material	cracked or uncracked concrete strength classes C20/25 to C50/60 compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013+A1:2016								
Hole drilling	hammer drilling / compresse	ed air drilling / vacuum drilling							
Temperature range 1)	I: -40°C to +40°C II: -40°C to +80°C III: -40°C to +120°C IV: -40°C to +160°C	I: -40°C to +40°C II: -40°C to +80°C III: -40°C to +120°C IV: -40°C to +160°C							

1) Temperature Range I: max. short term temperature +40°C max. long term temperature +24°C and Temperature Range II: max. long term temperature +50°C max. short term temperature +80°C and Temperature Range III: max. long term temperature +72°C max. short term temperature +120°C and Temperature Range IV: max. long term temperature +100°C max. short term temperature +160°C and

Injection System VMH for concrete	
Intended Use Specifications	Annex B1

Specification of intended use

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: all materials
- For all other conditions:

Intended use of Materials according to Annex A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry or wet concrete or waterfilled drill holes (not seawater)
- · Hole drilling by hammer or compressed air drill or vacuum drill mode
- · Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the responsibility of the person competent for technical matters on site
- The injection mortar is assessed for installation at minimum concrete temperature of -5°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.
- Internally threaded anchor rod: screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Injection System VMH for concrete	
Intended Use Specifications	Annex B2

Table B1: Installation parameters for threaded rods

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of thread	ded rod	$d=d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole	diameter	d_0	[mm]	10	12	14	18	22	28	30	35
Effective anchorage	no donth —	$h_{\text{ef,min}}$	[mm]	60	60	70	80	90	96	108	120
Ellective anchorag	je deptir —	$h_{\text{ef,max}}$	[mm]	160	200	240	320	400	480	540	600
Diameter of	Pre-setting installation	d _f ≤	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture ²⁾	Through set installation	ting d _f ≤	[mm]	12	14	16	20	24	30	33	40
Maximum installat	ion torque	max.T _{inst} ≤	[Nm]	10	20	40 (35) ¹⁾	60	100	170	250	300
Minimum thickness of member h _{min} [mi		[mm]	-	_{ef} + 30 m : 100 mr		-		h _{ef} + 2d ₀	1		
Minimum spacing s _{min} [mm]		[mm]	40	50	60	75	95	115	125	140	
Minimum edge dis	tance	Cmin	[mm]	35	40	45	50	60	65	75	80

¹⁾ max. installation torque for M12 with steel grade 4.6

Table B2: Installation parameters for internally threaded anchor rods

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod	I) d=d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d_0	[mm]	12	14	18	22	28	35
Effective encharge depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective anchorage depth	$h_{\text{ef},\text{max}}$	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	$d_f \leq$	[mm]	7	9	12	14	18	22
Maximum installation torque	max.T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	l _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	Smin	[mm]	50	60	75	95	115	140
Minimum edge distance	Cmin	[mm]	40	45	50	60	65	80

¹⁾ with metric thread acc. to EN 1993-1-8:2005+AC:2009

Installation parameters

Table B3: Installation parameters for rebar

Rebar	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Diameter of rebar	d=d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter ¹⁾	d_0	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effective encharge doubt	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Effective anchorage depth -	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		ו			h _{ef}	+ 2d ₀			
Minimum spacing	Smin	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	Cmin	[mm]	35	40	45	50	50	60	70	70	75	85

 $^{^{1)}}$ for diameter $\varnothing 8, \varnothing 10, \varnothing 12, \varnothing 24$ and $\varnothing 25$ both nominal drill hole diameter can be used

Injection System VMH for concrete Intended use

Z44709.21 8.06.01-76/21

Annex B3

²⁾ for applications under seismic loading the diameter of clearance hole in the fixture shall be at maximum d_{nom} + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar

Table B4: Parameter cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	DriⅡ bit Ø	Brush Ø	min. Brush Ø
		4111111111111		d _b	
[-]	[-]	Ø [mm]	d ₀ [mm]	d ь [mm]	d _{b,min} [mm]
M8		8	10	11,5	10,5
M10	VMU-IG M 6	8 / 10	12	13,5	12,5
M12	VMU-IG M 8	10 / 12	14	15,5	14,5
		12	16	17,5	16,5
M16	VMU-IG M10	14	18	20,0	18,5
		16	20	22,0	20,5
M20	VMU-IG M12		22	24,0	22,5
		20	25	27,0	25,5
M24	VMU-IG M16		28	30,0	28,5
M27		24 / 25	30	31,8	30,5
		24 / 25	32	34,0	32,5
M30	VMU-IG M20	28	35	37,0	35,5
		32	40	43,5	40,5

Table B5: Retaining washer

Drill bit Ø	4	Installation direction and use				
d ₀ [mm]	[-]	•	→	1		
10						
12			0			
14	retaining washer required					
16						
18	VM-IA 18					
20	VM-IA 20					
22	VM-IA 22					
25	VM-IA 25	h _{ef} >	h _{ef} >	all		
28	VM-IA 28	250mm	250mm	all		
30	VM-IA 30					
32	VM-IA 32					
35	VM-IA 35					
40	VM-IA 40					

Vacuum drill bit

Drill bit diameter (d₀): all diameters Vacuum drill bit (MKT Hollow drill bit SB, Würth Saugbohrer or Heller Duster Expert) and a class M vacuum with minimum negative pressure of 253 hPa and a flow rate of minimum 42 l/s (150 m³/h)

Recommended compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

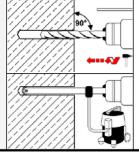
Blow-out pump (volume 750ml)

Drill bit diameter (d_0) : 10 mm to 20 mm Drill hole depth (h_0) : \leq 10 d_{nom} for uncracked concrete

Injection System VMH for concrete

Intended Use

Cleaning and setting tools


Annex B4

Installation Instructions

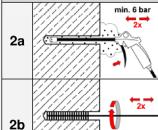
Drilling of the hole

1

Hammer drill or compressed air drill

Drill with hammer drill or compressed air drill a hole into the base material to the size required by the selected anchor (Table B1, B2 or B3). Continue with step 2. In case of aborted drill hole, the drill hole shall be filled with mortar.

Vacuum drill bit: see Annex B4

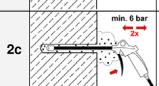

Drill hole into the base material to the embedment size and embedment depth required by the selected anchor (Table B1, B2 or B3). This drilling system removes dust and cleans the drill hole during drilling. Continue with step 3. In case of aborted hole, the drill hole shall be filled with mortar.

Cleaning (not applicable when using a vacuum drill)

Attention! Standing water in the drill hole must be removed before cleaning!

Cleaning with compressed air

all substrates and diameters according to Annex B1

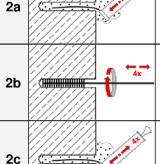


Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) a minimum of **two** times until return air stream is free of noticeable dust.

If the drill hole ground is not reached, an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $\geq d_{b,min}$ (Table B4) a minimum of **two** times.

If the drill hole ground is not reached with the brush, an appropriate brush extension must be used.



Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) again a minimum of **two** times until return air stream is free of noticeable dust.

If the drill hole ground is not reached, an extension must be used.

2 Manual cleaning

uncracked concrete, dry and wet drill holes; drill hole diameter d₀ ≤ 20mm and drill hole depth h₀ ≤ 10 dnom

Starting from the bottom or back of the drill hole, blow out the hole with the blow-out pump a minimum of **four** times until return air stream is free of noticeable dust.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $\geq d_{b,min}$ (Table B4) a minimum of **four** times.

If the drill hole ground is not reached with the brush, an appropriate brush extension must be used.

Starting from the bottom or back of the drill hole blow out the hole again a minimum of **four** times until return air stream is free of noticeable dust.

After cleaning, the drill hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the drill hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the drill hole again.

Injection System VMH for concrete

Intended Use

Installation instructions

Annex B5

744709 21 8 06 01-76/21

Installation instructions (continuation)

lnj	ection	
3	3	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B6) as well as for new cartridges, a new static-mixer shall be used.
4	hef	Prior to inserting the rod into the filled drill hole, the position of the embedment depth shall be marked on the threaded rod or rebar
5	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.
6a		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. If the drill hole ground is not reached, an appropriate extension nozzle shall be used. Observe working times given in Table B6.
6b		Retaining washer and mixer nozzle extensions shall be used according to Table B5 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and anchorage depth hef > 250mm • Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Injection System VMH for concrete

Intended Use

Installation instructions (continuation)

Annex B6

Installation instructions (continuation) Setting the fastening element Push the fastening element into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. 7 The anchor shall be free of dirt, grease, oil or other foreign material. **400** After installation, the annular gap between anchor rod and concrete must be completely filled with mortar, in the case of push-through installation also in the 8 fixture. If these requirements are not fulfilled, repeat application before end of working time! For overhead installation, the anchor should be fixed (e.g. by wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. 9 Do not move or load the anchor until it is fully cured (attend Table B6). 10 Remove excess mortar. The fixture can be mounted after curing time. Apply installation torque ≤T_{inst} 11 according to Table B1 or B2. In case of pre-setting installation, the annular gap between anchor rod and fixture may optionally be filled with mortar. Therefore, replace regular washer by washer 12 with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Table B6: Working time and curing time

Concrete temperature	Mayking time	Minimum curing time			
Concrete temperature	Working time	dry concrete	wet concrete		
-5°C to -1°C	50 min	5 h	10 h		
0°C to +4°C	25 min	3,5 h	7 h		
+5°C to +9°C	15 min	2 h	4 h		
+10°C to +14°C	10 min	1 h	2 h		
+15°C ^{to} +19°C	6 min	40 min	80 min		
+20°C to +29°C	3 min	30 min	60 min		
+30°C to +40°C	2 min	30 min	60 min		
Cartridge temperature	+ 5°C to + 40°C				

Injection System VMH for concrete	
Intended Use Installation instructions (continuation) / Working and curing time	Annex B7

Table C1: Characteristic steel resistance for threaded rods under tension load

Threa	ded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel	failure										
Cross	Cross sectional area A _s [mm²] 36,6 58,0 84,3 157 245 353 459 561							561			
Chara	cteristic resistance under tension	load 1)									
pe	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	$N_{\text{Rk,s}}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
zir	Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
steel	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Stainless steel	A2, A4 and HCR Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
	A4 and HCR Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Partia	I factor ²⁾										
	Property class 4.6	γMs,N	[-]				2	,0			
led ted	Property class 4.8	γMs,N	[-]				1	,5			
Steel, zinc plated	Property class 5.6	γMs,N	[-]	2,0							
zin	Property class 5.8	γMs,N	[-]	1,5							
	Property class 8.8	γMs,N	[-]	1,5							
steel	A2, A4 and HCR Property class 50	γ̃Ms,N	[-]				2,	86			
Stainless steel	A2, A4 and HCR Property class 70	γMs,N	[-]			1,	87			_3)	_3)
Stair	A4 and HCR Property class 80	γMs,N	[-]			1	,6			_3)	_3)

¹⁾ the characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

Injection System VMH for concrete	
Performance Characteristic values for threaded rods under tension loads	Annex C1

²⁾ in absence of other national regulations

³⁾ Anchor type not part of the ETĂ

Table C2: Characteristic steel resistance for threaded rods under shear load
--

	2. Onaracteristic steel resistar										1
Threade	d rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel fai	lure										
Cross se	ectional area	A_{s}	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Characte	eristic resistances under shear load	J 1)									
Steel fai	lure <u>without</u> lever arm										
pe	Property class 4.6 and 4.8	V^0 Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	V^0 Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
zir	Property class 8.8	V^0 Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
SS	A2, A4 and HCR, property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	_3)	_3)
Sta	A4 and HCR, property class 80	V^0 Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
Steel fai	lure <u>with</u> lever arm										
pe	Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
zin	Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
ss	A2, A4 and HCR, property class 50	M^0 Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Stainless steel	A2, A4 and HCR, property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	_3)	_3)
Sts	A4 and HCR, property class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Partial fa	actor ²⁾										
	Property class 4.6	γMs,V	[-]	1,67							
Steel, zinc plated	Property class 4.8	γMs,V	[-]				1,	25			
Stee nc pla	Property class 5.6	γMs,V	[-]					67			
S zinc	Property class 5.8	γMs,V	[-]					25			
	Property class 8.8	γMs,V	[-]	1,25							
SSS	A2, A4 and HCR, property class 50	γMs,V	[-]				2,	38			
Stainless steel	A2, A4 and HCR, property class 70	γMs,V	[-]			1	,56			_3)	_3)
St	A4 and HCR, property class 80	γMs,V	[-]			1	,33			_3)	_3)

¹⁾ the characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid

³⁾ Anchor type not part of the ETA

Injecti	on System	VMH for	concrete

Performance

Characteristic values for threaded rods under shear loads

Annex C2

²⁾ in absence of other national regulations

Table C3: Characteristic values of concrete cone failure and splitting failure

Threaded rods / Internally threaded anchor rods / Rebars			all sizes	
Concrete cone fa	ilure			
Factor k	uncracked concrete	$k_{\text{ucr},N}$	[-]	11,0
Factor k ₁	cracked concrete	k cr,N	[-]	7,7
Edge distance		Ccr,N	[mm]	1,5 • h _{ef}
Spacing		Scr,N	[mm]	2,0 • Ccr,N
Splitting failure				
Characteristic resi	stance	N^0 Rk,sp	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c})
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}
Edge distance	2,0> h/h _{ef} > 1,3	Ccr,sp	[mm]	2 • h _{ef} (2,5 - h / h _{ef})
	h/h _{ef} ≤ 1,3			2,4• h _{ef}
Spacing		S _{cr,sp}	[mm]	2,0 • C _{cr,sp}

Injection System VMH for concrete	
Performance Characteristic values of concrete cone failure and splitting failure	Annex C3

Table C4: Characteristic values of tension loads for threaded rods, static and quasi-static action, working life 50 years

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure												
Characteristic re	esistance	$N_{Rk,s}$	[kN]	A₅ • f _{uk} or see Table C1								
Partial factor	[-]				see Ta	able C1						
Combined pull	out and concrete failu	ıre										
Characteristic	bond resistance in <u>un</u>	<u>cracked</u> (concrete	C20/25								
	I 40°C / 24°C	2		17	17	16	15	14	13	13	13	
Temperature	II 80°C / 50°C		[N1/mmm2]	17	17	16	15	14	13	13	13	
range	III 120°C / 72°C	τ _{Rk,ucr}	[N/mm²]	15	14	14	13	12	12	11	11	
	VI 160°C / 100°C	7		12	11	11	10	9,5	9,0	9,0	9,0	
Characteristic	bond resistance in <u>cra</u>	cked co	ncrete C2	0/25								
	I 40°C / 24°C			7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
Temperature	II 80°C / 50°C		[N]//ss/ss 2]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
range	III 120°C / 72°C	τ _{Rk,cr}	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
	VI 160°C / 100°C			5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
Reduction fact	or ψ ⁰ sus in concrete C2	0/25	•	•								
	I 40°C / 24°C						0,	90				
Temperature	II 80°C / 50°C	→ γιζους	[-]				0,	87				
range	III 120°C / 72°C	<u> </u>		0,75								
	VI 160°C / 100°C			0,66								
			C25/30	1,02								
			C30/37					04				
Increasing facto	rs for concrete	Ψс	C35/45 C40/50					07				
			C40/50					08 09				
			C50/60					10				
Concrete cone	failure		030/00				٠,	10				
Relevant paran							see Ta	able C3				
Splitting failure												
Relevant paran							see Ta	able C3				
Installation fac	tor		1									
alma a marcal	vacuum cleanin	9					1	,2				
dry or wet — concrete —	manual cleanin	γinst	[-]		1	,2		No pe	erformar	nce ass	essed	
	compressed air cleaning	9					1	,0				
water filled drill hole	compressed air cleaning	γinst	[-]				1	,4				

Injection System VMH for concrete	
Performance Characteristic values of tension loads for threaded rods, working life 50 years	Annex C4

Table C5: Characteristic values of tension loads for threaded rods, static and quasi-static action, working life 100 years

Threaded rod					М8	M10	M12	M16	M20	M24	M27	M30
Steel failure												
Characteristic re	N _{Rk,s}	[kN]	A _s ⋅ f _{uk} or see Table C1									
Partial factor	[-]				see Ta	ıble C1						
Combined pull	-out ar	nd concrete fai	lure									
Characteristic	bond r	esistance in <u>u</u>	ncracked (concrete (C20/25							
Temperature	1	40°C / 24°C		[N]/wa wa 2]	17	17	16	15	14	13	13	13
range	II	80°C / 50°C	TRk,ucr,100	[N/mm²]	17	17	16	15	14	13	13	13
Characteristic	bond r	esistance in <u>cr</u>	acked cor	ncrete C2	0/25							
Temperature	emperature I 40°C / 24°C	_	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5	
range	П	80°C / 50°C	TRk,cr,100	[14/11111-]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5
			C25/30				1,	02				
				C30/37	1,04							
Increasing factor	ro for o	oporata		C35/45	1,07							
increasing facto	15 101 0	oncrete	Ψα	C40/50	1,08							
				C45/55	1,09							
				C50/60				1,	10			
Concrete cone	failure)										
Relevant paran	neter							see Ta	ıble C3			
Splitting failure	е											
Relevant parar	neter							see Ta	ıble C3			
Installation fac	tor											
	va	cuum cleaning						1	,2			
dry or wet		anual cleaning	γinst	[-]	1,2 No performance assesse							essed
CONCIE	С	ompressed air						1	,0			
water filled drill hole	' ' '			[-]				1	,4			

Injection System VMH for concrete	
Performance Characteristic values of tension loads for threaded rods, working life 100 years	Annex C5

Table C6: Characteristic values of shear loads for threaded rods, static and quasi-static action

Threaded rod		М8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm										
Characteristic resistance Steel, zinc plated Class 4.6, 4.8, 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	0,6 • A _s • f _{uk} or see Table C2							
Characteristic resistance Steel, zinc plated, class 8.8, stainless steel A2, A4 and HCR	$V^0_{Rk,s}$	[kN]	0,5 ⋅ A _s ⋅ f _{uk} or see Table C2							
Ductility factor	k ₇	[-]	1,0							
Partial factor	γMs,V	[-]	see Table C2							
Steel failure <u>with</u> lever arm										
Characteristic bending resistance	M^0 Rk,s	[Nm]					V _{el} ∙ f _{uk} 「able C2			
Elastic section modulus	Wel	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]				see Ta	able C2			
Concrete pry-out failure										
Pry-out factor	k ₈	[-]				2	,0			
Concrete edge failure										
Effective length of anchor	l _f	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ;300mm							
Outside diameter of anchor	d _{nom}	[mm]	8 10 12 16 20 24 27				30			
Installation factor	γinst	[-]	1,0							

Injection System VMH for concrete	
Performance Characteristic values of shear loads for threaded rods	Annex C6

Table C7: Characteristic values of tension loads for threaded rods, seismic action (performance category C1 + C2), working life 50 and 100 years

						•						
Threaded rod					М8	M10	M12	M16	M20	M24	M27	M30
Steel failure												
			N _{Rk,s,C1}	[kN]	1,0 • N _{Rk,s}							
			[kN]	-	1)		1,0 •	N _{Rk,s}		_1)		
Partial factor	γMs,N	[-]				see Ta	ıble C1					
Combined pull	-out a	nd concrete failu	ıre									
Characteristic	bond	resistance in con	crete C20	0/25 to C5	0/60							
	l:	40°C / 24°C	τRk,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
	١.		τRk,C2	[N/mm²]	-	_1)		3,6 3,5 3,3 2,3		2,3	_1)	
	II:	80°C / 50°C	τRk,C1	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature		00 07 30 0	τRk,C2	[N/mm²]	_1)		3,6 3,5 3,3 2,3		2,3	_1)		
range	III:	120°C / 72°C	τRk,C1	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
	"""	120 07 12 0	τRk,C2	[N/mm²]	-	1)	3,1	3,0	2,8	2,0	_	1)
	VI:	160°C / 100°C	τRk,C1	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
VI.		100 07 100 0	τRk,C2	[N/mm²]	-	1)	2,5	2,7	2,5	1,8	_	1)
Installation fac	tor											
Compressed air	r _	dry or wet conc	- Vinet	[-]	1,0							
cleaning water filled drill hole '			1,4									
Vacuum cleanir	ng	dry or wet conc	rete γ _{inst}	[-]				1	,2			

No performance assessed

Table C8: Characteristic values of shear loads for threaded rods, seismic action (performance category C1 + C2)

Threaded rod	Threaded rod						M12	M16	M20	M24	M27	M30
Steel failure without lever arm												
V _{Rk,}			Rk,s,C1	[kN]	0,7 • V ⁰ Rk,s							
Characteristic resistance —		V_{R}	Rk,s,C2	[kN]	_1)		0,7 • V ⁰ _{Rk,s}			_1)		
Partial factor γ _{Ms,N}			γмѕ,Ν	[-]	see Table C2							
	without hole cle		α_{gap}	[-]	1,0							
Factor for anchorages	with hole cle between faster			0,5								

No performance assessed

Injection System VMH for concrete	
Performance Characteristic values for threaded rods under seismic action	Annex C7

Table C9: Characteristic values of tension loads for internally threaded anchor rod, static and quasi-static action, working life 50 years

Internally threa	aded anchor rod				VMU-IG M6	VMU-IG M8	VMU-IG M10	VMU-IG M12	VMU-IG M16	VMU-K M20	
Steel failure 1)											
Characteristic re	esistance,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
		8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor			γMs,N	[-]			1,	5			
Characteristic resteel A4 / HCR,	esistance, stainless property class	70	$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor			γMs,N	[-]			1,87	•		2,86	
Combined pull	-out and concrete fail	ure									
Characteristic	bond resistance in <u>ur</u>	ocrac	ked co	ncrete C	20/25						
	l: 40°C / 24	4°C			17	16	15	14	13	13	
Temperature	II: 80°C / 50	O°C	_[[N]/mmm2]	17	16	15	14	13	13	
range	III: 120°C / 72	2°C	τ _{Rk,ucr}	[N/mm²]	14	14	13	12	12	11	
	VI: 160°C / 100	O°C			11	11	10	9,5	9,0	9,0	
Characteristic	bond resistance in <u>cr</u>	acke	<u>d</u> conc	rete C20	25						
	l: 40°C / 24	4°C			7,5	8,0	9,0	8,5	7,0	7,0	
Temperature -	II: 80°C / 50	O°C		[N.L/ 0]	7,5	8,0	9,0	8,5	7,0	7,0	
range	III: 120°C / 72	2°C	τ _{Rk,cr}	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0	
-	VI: 160°C / 100	O°C			5,5	6,0	6,5	6,0	5,5	5,5	
Reduction fact	or ψ ⁰ sus in concrete C	20/25	;								
	l: 40°C / 24		ψ ⁰ sus				0,9	90			
Temperature	II: 80°C / 50	O°C		[-]	0,87						
range	III: 120°C / 72	2°C			0,75						
-	VI: 160°C / 100	O°C			0,66						
				C25/30			1,0)2			
				C30/37			1,0)4			
la conservator o fersion				C35/45			1,0)7			
Increasing factor	ors for concrete		Ψс	C40/50			1,0	08			
				C45/55			1,0	9			
				C50/60			1,1	10			
Concrete cone	failure										
Relevant paran	neter						see Ta	ble C3			
Splitting failure	9										
Relevant paran	neter						see Ta	ble C3			
Installation fac	tor										
alm, au	vacuum clean	ning					1,	2			
dry or wet	manual clean	ning	γinst	[-]		1,2		No perfo	rmance as	ssesse	
COLICIEIE -	compressed air clean	ning		_			1,	0			
waterfilled drill hole	compressed air clean		γinst	[-]			1,				

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

2) for	VMÚ-IG	M20:	property	class 50
′ 101	V IVIO-IG	IVIZU.	DIODELLA	Class JU

Injection System VMH for concrete	
Performance Characteristic values of tension loads for internally threaded anchor rod, working life 50 years	Annex C8

Table C10: Characteristic values of tension loads for internally threaded anchor rod, static and quasi-static action, working life 100 years

Internally threaded anchor rod				VMU-IG M6	VMU-IG M8	VMU-IG M10	VMU-IG M12	VMU-IG M16	VMU-IO M20	
Steel failure 1)										
Characteristic resistance,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
steel, zinc plated, property class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor		γMs,N	[-]			1,	5			
Characteristic resistance, stainless steel A4 / HCR, property class	70	$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor		γMs,N	[-]			1,87			2,86	
Combined pull-out and concrete	e failu	re								
Characteristic bond resistance	in <u>unc</u>	cracked co	ncrete C	20/25						
Temperature I: 40°C / 2	24°C	-	[N]/mm2]	17	16	15	14	13	13	
range II: 80°C/	50°C	TRk,ucr,100	[N/mm²]	17	16	15	14	13	13	
Characteristic bond resistance	in <u>cra</u>	<u>cked</u> cond	rete C20	25						
Temperature I: 40°C / 2	24°C	TD 1 100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5	
range II: 80°C /	50°C	τ _{Rk,cr,100}	[14/11111-]	6,0	6,5	6,5	6,5	6,5	6,5	
			C25/30			1,0)2			
			C30/37			1,(04			
Increasing factors for concrete		11/-	C35/45			1,0	07			
moreasing factors for concrete		Ψс	C40/50			1,0	08			
			C45/55			1,0	09			
			C50/60			1,	10			
Concrete cone failure										
Relevant parameter						see Ta	ble C3			
Splitting failure										
Relevant parameter						see Ta	ble C3			
Installation factor										
vacuum clea	ning					1,	2			
dry or wet manual clea	aning	γinst	[-]		1,2		No perfo	rmance as	ssessed	
concrete compresse			1,0							
waterfilled drill compresse hole clea	ed air uning	γinst	[-]			1,	2			

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

²⁾ for VMU-IG M20: property class 50

Injection System VMH for concrete	
Performance Characteristic values of tension loads for internally threaded anchor rod, working life 100 years	Annex C9

Table C11: Characteristic values of shear loads for internally threaded anchor rod, static and quasi-static action

Interi	nally threaded ar	nchor rod			VMU-IG M6	VMU-IG M8	VMU-IG M10	VMU-IG M12	VMU-IG M16	VMU-IG M20
Steel	failure without	ever arm 1)								
ted,	Characteristic resistance	property class 5.8	V^0 Rk,s	[kN]	6	10	17	25	45	74
Steel, zinc plated	Characteristic resistance	property class 8.8	V^0 Rk,s	[kN]	8	14	23	34	60	98
z	Partial factor		γMs,V	[-]			1,	25		
Stainless steel	Characteristic resistance A4 / HCR	property class 70	V^0 Rk,s	[kN]	7	13	20	30	55	62 ²⁾
l $\ddot{5}$	Partial factor		γMs,V	[-]			1,56			2,38
Ducti	lity factor		k ₇	[-]			1	,0		
Steel	failure with leve	r arm 1)								
ted,	Characteristic bending resistance	property class 5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Steel, zinc plated	Characteristic bending resistance	property class 8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
	Partial factor		γMs,V	[-]			1,	25		
Stainless steel	Characteristic bending resistance A4 / HCR	property class 70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾
l o	Partial factor		γMs,V	[-]			1,56			2,38
Conc	rete pry-out failu	ıre								
Pry-o	ut factor		k ₈	[-]			2	,0		
Conc	rete edge failure	•								
Effec	tive length of anch	nor	lf	[mm]			min (h _{ef} ; 300mm)			
Outsi	de diameter of an	chor	d_{nom}	[mm]	10 12 16 20 24 3					
Instal	lation factor		γinst	[-]			1	,0		

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod (exception: VMU-IG M20). The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Fastening screws or threaded rods (incl. nut and washer): property class 70

Injection System VMH for concrete	
Performance Characteristic values of shear loads for internally threaded anchor rod	Annex C10

²⁾ for VMU-IG M20: Internally threaded rod: property class 50;

Table C12: Characteristic values of tension loads for rebar, static and quasi-static action, 50 years working life

Reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø 32														
Reinforcing	bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure						•		•		'				
Characteristi	c resista	ınce	$N_{Rk,s}$	[kN]					As •	$f_{uk}^{1)}$				
Cross section	nal area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor			γMs,N	[-]					1,	4 ²⁾				
Combined p	ull-out	and concrete fail	ure											
Characteris	tic bond	l resistance in <u>un</u>	cracke	<u>d</u> concret	e C20)/25								
	1:	40°C / 24°C			14	14	14	14	13	13	13	13	13	13
Temperature	<u> II:</u>	80°C / 50°C	TDI	[N/mm²]	14	14	14	14	13	13	13	13	13	13
range	<u>III:</u>	120°C / 72°C	τRk,ucr	[14/11111-] 	13	12	12	12	12	11	11	11	11	11
	VI:	160°C / 100°C			9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Characteris		l resistance in <u>cr</u> a	acked c	oncrete (1			ı		•			
	<u> </u>	40°C / 24°C			5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature	<u> II:</u>	80°C / 50°C	τ _{Rk,cr}	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
range		120°C / 72°C	rnk,ci	[. •/]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
	VI:	160°C / 100°C			4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Reduction fa	20/25	T												
	I:	40°C / 24°C	Ψ^0 sus	[-]	0,90									
Temperature	II:	80°C / 50°C			0,87									
range	<u>III:</u>	120°C / 72°C	ψ sus	[[]						75				
	VI:	160°C / 100°C							0,	66				
				C25/30	1,02									
				C30/37					1,	04				
Increasing fa	ctor for	concrete)1/-	C35/45					1,	07				
increasing ia	.0101 101 1	concrete	Ψο	C40/50					1,	80				
				C45/55					1,	09				
				C50/60					1,	10				
Concrete co	ne failu	re												
Relevant pa	rameter							5	see Ta	ble C	3			
Splitting fail														
Relevant pa								5	see Ta	ble C	3			
Installation	factor													
dry or wet		vacuum cleaning							1	,2				
concrete		manual cleaning	γinst	[-]			1,2			· · · · · ·	perfor	mance	asses	ssed
compressed air cleaning					1,0									
waterfilled drill hole		essed air cleaning	γinst	[-]					1	,4				

 $^{^{1)}\,}f_{uk}\,shall$ be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System VMH for concrete	
Performance Characteristic values of tension loads for rebar, 50 years working life	Annex C11

Table C13: Characteristic values of tension loads for rebar, static and quasi-static action, 100 years working life

	100 ye	ears working iii												
Reinforcing	j bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure)						'							
Characterist	ic resistaı	nce	$N_{Rk,s}$	[kN]					As •	$f_{uk}^{1)}$				
Cross section	nal area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial facto	r		γMs,N	[-]					1,	4 ²⁾				
Combined	oull-out a	ınd concrete fail	ure											
Characteris	tic bond	resistance in <u>ur</u>	ocracke	<u>d</u> concret	te C20)/25								
Temperature	e <u>I:</u>	40°C / 24°C	·D. 400	[N/mm²]	14	14	14	14	13	13	13	13	13	13
range	II:	80°C / 50°C	Rk,ucr,100	[14/11111]	14	14	14	14	13	13	13	13	13	13
Characteristic bond resistance in <u>cracked</u> concre					C20/2	5								
Temperature	e <u>I:</u>	40°C / 24°C	TRk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
range	II:	80°C / 50°C	UHK,CI, TUU	[14/11111]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
				C25/30					1,	02				
				C30/37	1,04									
Increasing fa	actor for c	concrete	Ψc	C35/45	1,07									
moreasing k	20101 101 0	ionoroto	Ψ¢	C40/50	1,08									
				C45/55					1,	09				
				C50/60					1,	10				
Concrete co	one failur	e												
Relevant pa	arameter							8	ee Ta	ıble C	3			
Splitting fai	lure													
Relevant pa	arameter							8	see Ta	ıble C	3			
Installation	factor													
-la				1,2										
dry or wet concrete	dry or wet concrete manual cleaning			[-]			1,2			No	perforr	nance	asses	sed
	compressed air cleaning				1,0									
waterfilled drill hole	compre	ssed air cleaning	γ̃inst	[-]					1	,4				

 $^{^{\}rm 1)}\,f_{uk}\,shall$ be taken from the specifications of reinforcing bars $^{\rm 2)}$ in absence of national regulation

Injection System VMH for concrete	
Performance Characteristic values of tension loads for rebar, 100 years working life	Annex C12

l	Table C14: Characteristic va	lues of she a	ar Ioa	i ds fo	r reba	ır, sta	i tic an	d qu a	asi-st	atic a	ction	
ı												

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever a												
Characteristic shear resistance	[kN]	0,50 • A _s • f _{uk} ¹⁾										
Cross sectional area	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,V	[-]					1,5	5 ²⁾				
Ductility factor	[-]					1	,0					
Steel failure with lever arm												
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	1,2 • W _{el} • f _{uk} 1)									
Elastic section modulus	W_{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γMs,V	[-]	1,5 ²⁾									
Concrete pry-out failure												
Pry-out Factor	k ₈	[-]	2,0									
Concrete edge failure												
Effective length of rebar	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ; 300mm)								Omm)		
Outside diameter of rebar	d _{no}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor γ _{inst} [-]							1	,0				

 $^{^{1)}\,}f_{uk}\,shall$ be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System VMH for concrete	
Performance Characteristic values of shear loads for rebar	Annex C13

Table C15: Characteristic values of tension loads for rebar, seismic action (performance category C1), 50 and 100 years working life

														_
Reinforcing ba	ar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure														
Characteristic r	esist	ance	$N_{\text{Rk,s,C1}}$	[kN]					A _s •	f _{uk} 1)				
Cross sectional	l area	ì	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor			γMs,N	[-]					1,	4 ²⁾				
Combined pul	l-out	and concrete fai	lure											
Characteristic	bon	d resistance in co	oncrete C	20/25 to	C50/6	0								
	l:	40°C / 24°C			5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature	II:	80°C / 50°C	_	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
range	III:	120°C / 72°C	TRk,C1		4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
	VI:	160°C / 100°C			4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Installation fac	ctor													
dry or wet cond	γinst	[-]					1	,2						
		compressed air	γinst	[-]					1	,0				
waterfilled drill hole cleaning			γinst	[-]					1	,4				

 $^{^{1)}\,}f_{uk}\,\text{shall}$ be taken from the specifications of reinforcing bars

Table C16: Characteristic values of shear loads for rebar, seismic action (performance category C1)

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever a	ırm											
Characteristic resistance	V^0 Rk,s,C1	[kN]	0,35 • A _s • f _{uk} ¹⁾									
Cross sectional area	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,V	[-]	1,5 ²⁾									
Ductility factor	k ₇	[-]	1,0									

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Injection System VMH for concrete	
Performance Characteristic values for rebar under seismic action	Annex C14

²⁾ in absence of national regulation

²⁾ in absence of national regulation

Threaded rod	М8	M10	M12	M16	M20	M24	M27	M30		
Displacement facto uncracked concrete,		uasi-static acti	on, work	ing life 5	0 and 10	0 years				
Temperature range	δ _{N0} -factor		0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,04
I: 40°C / 24°C II: 80°C / 50°C	δ _{N∞} -factor		0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,06
Temperature range	δ_{N0} -factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm}^2}\right]$	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,04
III: 120°C / 72°C	δ _{N∞} -factor	^L N/mm ^{2J}	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,06
Temperature range VI: 160°C / 100°C	δ _{N0} -factor		0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,17
	δ _{N∞} -factor		0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,18
Displacement facto cracked concrete, sta		si-static action	, working	life 50 a	ınd 100 y	/ears				
Temperature range	δ _{N0} -factor		0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,10
I: 40°C / 24°C II: 80°C / 50°C	δ _{N∞} -factor		0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,13
Temperature range	δ _{N0} -factor	r mm	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,11
III: 120°C / 72°C	δ _{N∞} -factor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,14
Temperature range	δ _{N0} -factor		0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,41
VI: 160°C / 100°C	δ _{N∞} -factor		0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,42
Displacement, seisi	mic action (C2)								
All temperature	δ _{N,C2} (DLS)	[2)	0,24	0,27	0,29	0,27		2)
ranges	δn,c2 (ULS)	[mm]		-,	0,55	0,51	0,50	0,58	_2)	

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{- factor } \cdot \tau;$ $\delta_{N\infty} = \delta_{N\infty}\text{--factor }\cdot\tau;$ τ : acting bond stress for tension

Table C18: Displacements under shear load (threaded rod)

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30	
•	Displacement factor ¹⁾ cracked and uncracked concrete, static and quasi-static action										
All temperature ranges	δ_{V0} -factor	[mm//L/NI)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Displacement, seismic action (C2)											
All temperature ranges	δ v,c2(DLS)	[mm]		2) 3,6		3,0	3,1	3,5	_2)		
	δν,c2(ULS)	[mm]	/		7,0	6,6	7,0	9,3	/		

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: acting shear load

Injection System VMH for concrete

Performance

Displacements (threaded rod)

Annex C15

²⁾ No performance assessed

¹⁾ Calculation of the displacement

 $[\]delta_{V\infty} = \delta_{V\infty}$ -factor · V;

²⁾ No performance assessed

Table C19: Displacements under tension load (internally threaded anchor rod)

Internally threaded a	nchor rod		VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20				
	Displacement factor ¹⁾ uncracked concrete, static and quasi-static action, working life 50 and 100 years											
Temperature range I: 40°C / 24°C	δ_{N0} -factor		0,032	0,034	0,037	0,039	0,042	0,046				
II: 80°C / 50°C	δ _{N∞} -factor		0,042	0,044	0,047	0,051	0,054	0,060				
Temperature range	δ _{N0} -factor	mm 1	0,034	0,035	0,038	0,041	0,044	0,048				
III: 120°C / 72°C	δ _{N∞} -factor	\left[N/mm ²]	0,044	0,045	0,049	0,053	0,056	0,062				
Temperature range	δ _{N0} -factor		0,126	0,131	0,142	0,153	0,163	0,179				
VI: 160°C / 100°C	δ _{N∞} -factor		0,129	0,135	0,146	0,157	0,168	0,184				
Displacement factor cracked concrete, state		static action, v	vorking life	50 and 10	0 years							
Temperature range	δ _{N0} -factor		0,083	0,085	0,090	0,095	0,099	0,106				
I: 40°C / 24°C II: 80°C / 50°C	δ _{N∞} -factor		0,107	0,110	0,116	0,122	0,128	0,137				
Temperature range	δ _{N0} -factor	r mm	0,086	0,088	0,093	0,098	0,103	0,110				
III: 120°C / 72°C	δ _{N∞} -factor	$\left[\frac{1}{N/mm^2}\right]$	0,111	0,114	0,121	0,127	0,133	0,143				
Temperature range	δ _{N0} -factor		0,321	0,330	0,349	0,367	0,385	0,412				
VI: 160°C / 100°C	δ _{N∞} -factor		0,330	0,340	0,358	0,377	0,396	0,424				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\tau\text{:}$ acting bond stress for tension

 $\delta_{N^{\infty}} = \delta_{N^{\infty}}\text{-factor} \cdot \tau;$

Table C20: Displacements under shear load (internally threaded anchor rod)

Internally threaded anchor rod			VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20			
Displacement factor ¹⁾ cracked and uncracked concrete, static and quasi-static action											
All temperature	δ _{v0} -factor	[mm//IcN]\]	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	δ _{ν∞} -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor · V;

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

Injection System VMH for concrete

Performance

Displacements (internally threaded anchor rod)

Annex C16

Table C21: Dis	placements ι	under tension	load (rebar)
----------------	--------------	----------------------	---------------------

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
	Displacement factor ¹⁾ uncracked concrete, static and quasi-static action, working life 50 and 100 years											
Temperature range I: 40°C / 24°C II: 80°C / 50°C	δ_{N0} -factor		0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
	δ _{N∞} -factor		0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature range III: 120°C / 72°C	δ _{N0} -factor	mm1	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
	δ _{N∞} -factor	l _{N/mm²}	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature range	δ _{N0} -factor		0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
VI: 160°C / 100°Č	δ _{N∞} -factor		0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Displacement factor cracked concrete, sta		si-static actio	on, wor	king life	50 an	d 100 y	ears					
Temperature range	δ_{N0} -factor		0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
I: 40°C / 24°C II: 80°C / 50°C	δ _{N∞} -factor		0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature range	δ _{N0} -factor	r mm ı	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
III: 120°C / 72°C	δ _{N∞} -factor	$\lfloor \frac{N/\text{mm}^2}{N} \rfloor$	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature range	δ_{N0} -factor		0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
VI: 160°C / 100°C	δ _{N∞} -factor		0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{- factor} \cdot \tau;$

Table C22: Displacements under shear load (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Displacement factor ¹⁾ cracked and uncracked concrete, static and quasi-static action												
All temperature ranges	δvo-factor	[mm//kN]\]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
	δ _{v∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: acting shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}\text{-factor }\cdot V;$

Injection System VMH for concrete

Performance

Displacements (rebar)

Annex C17