

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0194 of 14 March 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System VMZ dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

Werk 1, D Werk 2, D

23 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601, Edition 06/2021

ETA-17/0194 issued on 29 November 2021

European Technical Assessment ETA-17/0194 English translation prepared by DIBt

Page 2 of 23 | 14 March 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 14 March 2023

European Technical Assessment ETA-17/0194 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection System VMZ dynamic is a torque controlled bonded anchor consisting of a cartridge with injection mortar VMZ or VMZ Express, an anchor rod with expansion cones and external connection thread, a centring ring (only for through-setting installation), a conical washer, a hexagon nut with spherical contact surface and a locknut. For the pre-setting installation a conical washer with a bore is used. Alternatively the hexagon nut with spherical contact surface can be replaced by a spherical disc with hexagon nut.

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (static and quasi-static loading and seismic loading)	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B2, B3 and C4
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C5
Displacements under short-term and long-term loading (static and quasi-static loading)	see Annex C6
Characteristic resistance and displacements for seismic performance categories C1 and C2	see Annex C4 to C6

Essential characteristic (fatigue loading, Assessment method A: Continuous function of fatigue resistance)	Performance
Characteristic fatigue resistance under cyclic tension loading	
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	
Characteristic concrete cone, splitting and pull-out fatigue resistance $\Delta N_{Rk,c,0,n} \Delta N_{Rk,sp,0,n} \Delta N_{Rk,p,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	see Annex C1 to C3

European Technical Assessment

ETA-17/0194

Page 4 of 23 | 14 March 2023

English translation prepared by DIBt

Essential characteristic (fatigue loading, Assessment method A: Continuous function of fatigue resistance)	Performance
Characteristic fatigue resistance under cyclic shear loading	
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	
Characteristic concrete edge fatigue resistance $\Delta V_{Rk,c,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	see Annex C1 to C3
Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	
Characteristic fatigue resistance under combined cyclic tension and she	ear loading
Characteristic steel fatigue resistance a_{sn} ($n = 1$ to $n = \infty$)	see Annex C1 to C3
Load transfer factor for cyclic tension, shear and combined tension and	shear loading
Load transfer factor ψ_{FN}, ψ_{FV}	see Annex C1 to C3

Hygiene, health and the environment (BWR 3) 3.2

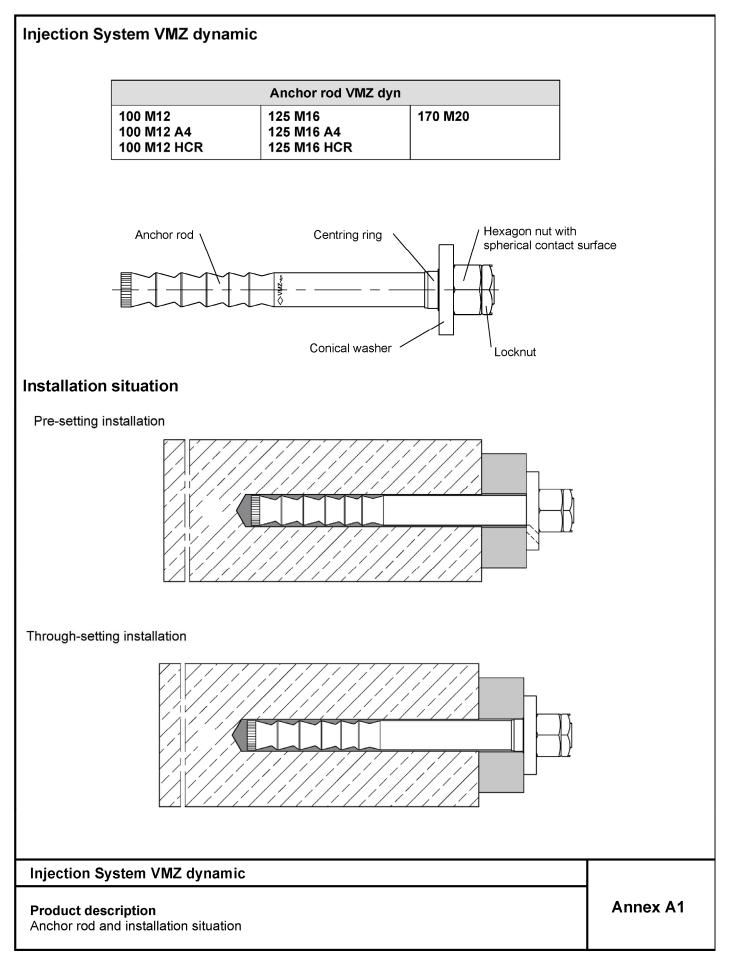
Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

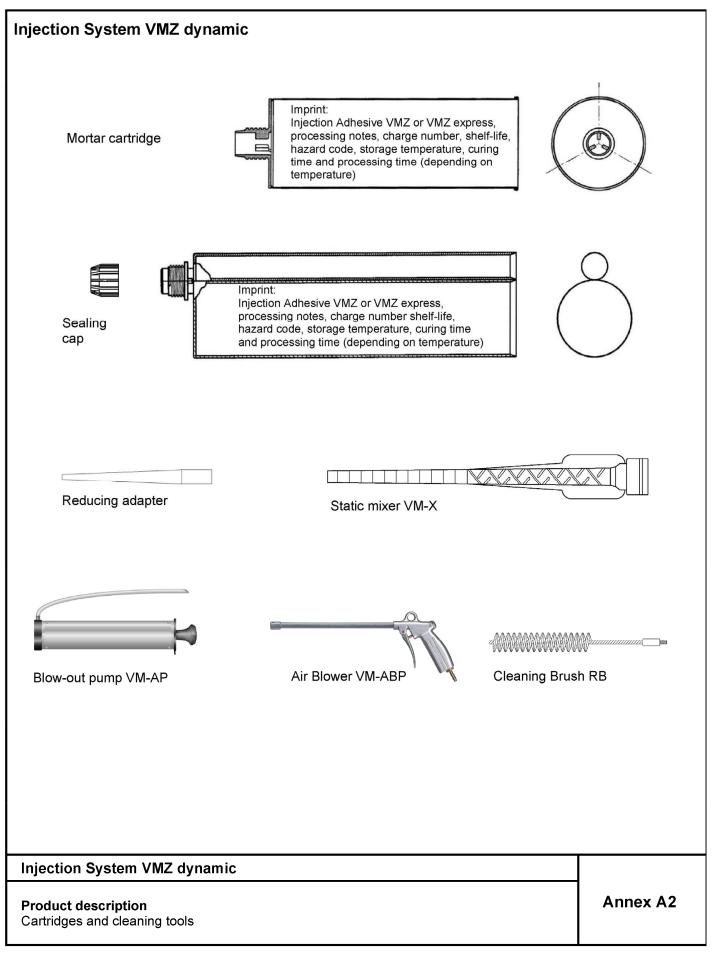
Technical details necessary for the implementation of the AVCP system, as provided for 5 in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 14 March 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section

beglaubigt: Stiller



Page 6 of European Technical Assessment ETA-17/0194 of 14 March 2023

English translation prepared by DIBt

Page 7 of European Technical Assessment ETA-17/0194 of 14 March 2023

English translation prepared by DIBt

Marking	- Marking:		VM7_dv	n 12-25							
	< V 1 2 A	> MZ-dyn ; 2 5 4 ;	identifyir anchor ic size of th maximur additiona on conic	ng mark of dentity hread m thicknes al marking o al washer al marking	s of fixtu of stainl of high	ure ess stee	l A4, if no n resistar	nt steel	J Ma	narking: e.g. rking of leng amic	
	کْر L						3a 4;		► bL	Cone marking	
Centring ring (through-setting installation only)	asher		Hexagor with sph contact	nerical	Locknu	ut					
		da da				co bo (a	onical wa ore Iternative	asher / c ely: mark	conical wa	ion on the asher with anchor rod)
Alternatively: Conical washer with bore radial angular		Alternati Spherica	al disc wi n nut wit	ith hexagor h spherica d)		t A	<u>nchor ver</u> alvanized 4 CR		<u>Marki</u> no ma A4 HCR	<u>ng:</u> arking	
					_						
Marking of length	I	J	K	L	N	1	N	0	Ρ	Q	
Length of anchor min \geq	139,7	152,4	165,1	-		·		215,9	228,6	241,3	
Length of anchor max <	152,4	165,1	177,8	3 190,5	203	3,2 2	15,9 2	228,6	241,3	254,0	
Marking of length	R	S	т	U	V	w	X	Y	Z	>Z	
Length of anchor min \geq	254,0		304,8		- 355,6	381,0	406,4	431,8			
Length of anchor max <	279,4	-	330,2		381,0	406,4	431,8	457,2			
Injection System VMZ dy	namic										
Product description Components, Marking									An	nex A3	

Part	Designation	Steel, zinc plated ≥ 5µm	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)			
1	Anchor rod	Steel, acc. to EN ISO 683-4:2018, galvanized and coated	High corrosion resistant s 1.4529, acc. to EN 10088				
2	Centring ring	Plastic					
3	Conical washer	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel, 1.4529, acc. to EN 10088:2014			
3a	Spherical disc	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel, 1.4529, acc. to EN 10088:2014			
4	Hexagon nut with spherical contact surface	Steel, galvanized	EN ISO 3506-2:2020, stainless steel, Property class 70, 1.4401 or 1.4571,	EN ISO 3506-2:2020, high corrosion resistant steel, Property class 70, 1.4529 or 1.4565,			
4a	Hexagon nut		acc. to EN 10088:2014	acc. to EN 10088:2014			
5	Locknut	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel, 1.4565, 1.4529 or 1.4547, acc. to EN 10088:2014			
6	Mortar Cartridge	Vinylester resin, styrene	-free	1			

Table A2: Dimensions

Part	Anchor size				100 M12	125 M16	170 M20
		Thread		-	M12	M16	M20
		Effective anchorage depth	h _{ef} ≥	[mm]	100	125	170
1	Anchor rod	Shaft diameter	d _k =	[mm]	12,5	16,5	22,0
		Longth	L_{min}	[mm]	143	180	242
		Length	L_{max}	[mm]	531	565	623
2	Centring ring	External diameter	Dz	[mm]	14	18	23,5
3	0 Opering have a hore	Thickness	ts	[mm]	6	7	8
	Conical washer	External diameter	da≥	[mm]	30	38	50
3a	Spherical disc	External diameter	ds =	[mm]	24	30	36
4	Hexagon nut with spherical contact surface	Width across nut	SW	[mm]	18 / 19	24	30
4a	Hexagon nut	Width across nut	SW	[mm]	19	24	30
5	Locknut	Width across nut	SW	[mm]	19	24	30

Injection System VMZ dynamic

Product description Materials and dimensions Annex A4

Specifications of intended use				
Injection System VMZ dynamic	100 M12	125 M16	170 M20	
Fatigue cyclic loading		\checkmark		
Static and quasi-static action		\checkmark		
Seismic action (Category C1 + C2)	✓			
Cracked or uncracked concrete	✓			
Strength classes acc. to EN 206:2013+A1:2016	C20/25 to C50/60			
Compacted reinforced or unreinforced normal weight concrete without fibers acc. to EN 206:2013+A1:2016	\checkmark			
Temperature range I -40 °C to +80 °C		m long-term temperat m short-term tempera		

Use conditions (Environmental conditions):

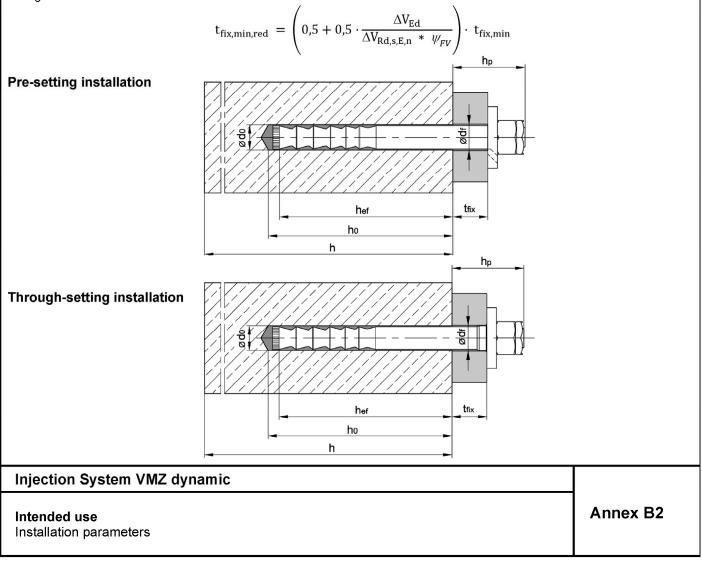
- Structures subject to dry internal conditions: all materials
- For all other conditions: Intended use of materials according to Annex A4, Table A1 corresponding to the corrosion resistance class CRC to EN 1993-1-4:2015

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed according to:
 - EOTA TR 061:2020 (Design method I and II) or
 - EN 1992-4:2018

Installation:

- Anchor shall only be used as a complete fastening unit delivered in series. Components of the anchor must not be replaced.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the site manager.
- Installation admissible in dry and wet concrete and in water-filled borehole.
- Drill hole must be cleaned directly prior to installation of the anchor or the drill hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the drill hole.
- Water filled drill holes must not be polluted otherwise the cleaning of the drill hole must be repeated.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -15 °C (for the standard variation of temperature after installation).
- It must be ensured that icing does not occur in the drill hole.
- Installation direction D3: vertically downwards and upwards as well as horizontally.
- Drilling by hammer drill bit, compressed air drill or vacuum drill bit.
- The filling of the annular gap can be omitted if it is ensured that the anchor is only loaded in axial direction.


Injection System VMZ dynamic

Intended use Specifications Annex B1

Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCR	170 M20
Effective anchorage depth	$h_{ef} \geq$	[mm]		100	125		170
Nominal diameter of drill hole	d0 =	[mm]	14		14 18		24
Depth of drill hole 1)	h₀≥	[mm]	105		130		180
Diameter of cleaning brush	D≥	[mm]	15,0		19,0		25,0
Installation torque	T _{inst} =	[Nm]		30	50		80
Diameter of clearance hole in the fixture	d _f =	[mm]	15			19	25
Fixture thickness 2)	$t_{\text{fix,min}} \geq$	[mm]	12		12 16		20
Fixture thickness ²⁾	$t_{\text{fix,max}} \leq$	[mm]			200	·	
Overstand	h _p =	[mm]	31 + t _{fix}	24 + t _{fix}	39 + t _{fix}	30 + t _{fix}	48 + t _{fix}

¹⁾ If the present fixture thickness is lower than the maximum fixture thickness of the anchor, the depth of drill hole should be increased accordingly

²⁾ $t_{\text{fix,min}}$ may be replaced by $t_{\text{fix,min,red}}$, if, when determining the anchor under the highest load, the action ΔV_{Ed} is smaller than the fatigue resistance in transverse direction

Table B2: Minimum thickness of concrete and minimum spacing and edge distance

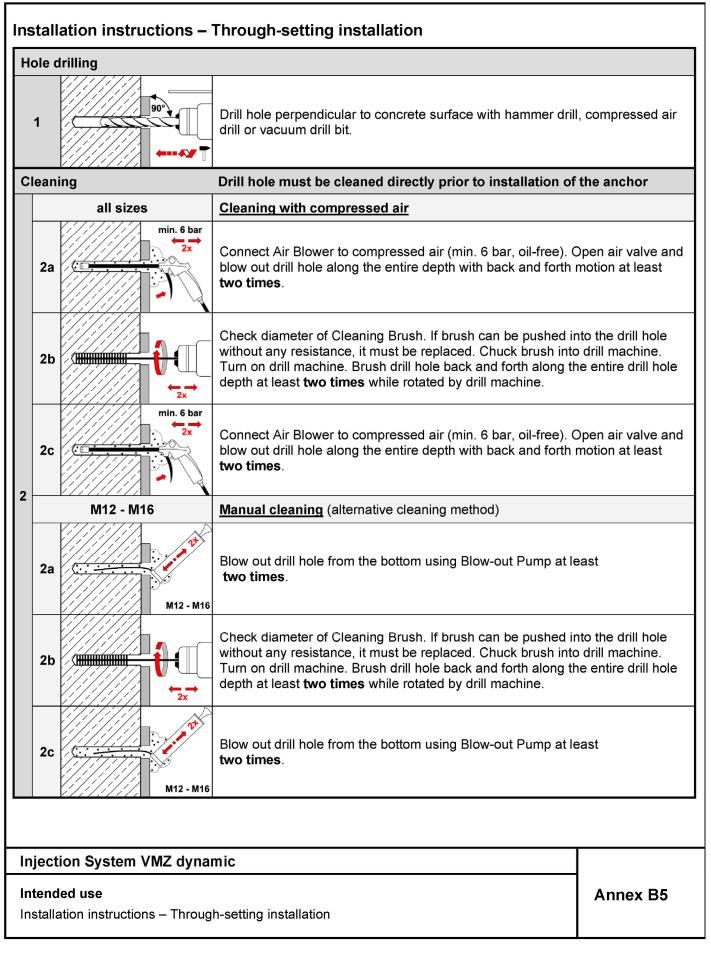
Anchor size			100 M12	125 M16	170 M20
Minimum thickness of concrete member	\mathbf{h}_{\min}	[mm]	130	160	220
Cracked concrete					
Minimum spacing	Smin	[mm]	50	60	80
Minimum edge distance ¹⁾	Cmin	[mm]	70 (50)	80 (60)	110 (80)
Uncracked concrete					
Minimum spacing	Smin	[mm]	80	60	80
Minimum edge distance	Cmin	[mm]	75	80	110

¹⁾ Values in brackets are valid if edge reinforcement d = 8 mm is installed

Injection System VMZ dynamic

Intended use Minimum thickness of concrete, spacing and edge distances Annex B3

Г



nperature in the drill hole	Maximum processing time	Minimum curing time in dry concrete ¹⁾
- 15 °C to - 10 °C	45 min	7 d
- 9 °C to - 5 °C	45 min	10:30 h
- 4 °C to - 1 °C	45 min	6:00 h
0 °C to + 4 °C	20 min	3:00 h
+ 5 °C to + 9 °C	12 min	2:00 h
+ 10 °C to + 19 °C	6 min	1:20 h
+ 20 °C to + 29 °C	4 min	45 min
+ 30 °C to + 34 °C	2 min	25 min
+ 35 °C to + 39 °C	1,4 min	20 min
+ 40 °C	1,4 min Cartridge temperature ≥ 5°C	15 min
ig time in wet concrete shall be dou	Cartridge temperature ≥ 5°C	15 min
ig time in wet concrete shall be dou	Cartridge temperature ≥ 5°C bled	15 min Minimum curing time in dry concrete ¹⁾
ig time in wet concrete shall be dou e B4: Processing time an	Cartridge temperature ≥ 5°C bled d curing time, VMZ express	Minimum curing time in
ig time in wet concrete shall be dou e B4: Processing time an mperature in the drill hole	Cartridge temperature ≥ 5°C bled d curing time, VMZ express Maximum processing time	Minimum curing time in dry concrete ¹⁾
ig time in wet concrete shall be dou e B4: Processing time an mperature in the drill hole - 5 °C to - 1 °C	Cartridge temperature ≥ 5°C bled d curing time, VMZ express Maximum processing time 20 min	Minimum curing time in dry concrete ¹⁾ 4:00 h
e B4: Processing time an nperature in the drill hole - 5 °C to - 1 °C 0 °C to + 4 °C	Cartridge temperature ≥ 5°C bled d curing time, VMZ express Maximum processing time 20 min 10 min	Minimum curing time in dry concrete ¹⁾ 4:00 h 2:00 h
e B4: Processing time an mperature in the drill hole - 5 °C to - 1 °C 0 °C to + 4 °C + 5 °C to + 9 °C	Cartridge temperature ≥ 5°C bled Maximum processing time 20 min 10 min 6 min	Minimum curing time in dry concrete ¹⁾ 4:00 h 2:00 h 1:00 h
ig time in wet concrete shall be dou e B4: Processing time an imperature in the drill hole - 5 °C to - 1 °C 0 °C to + 4 °C + 5 °C to + 9 °C + 10 °C to + 19 °C	Cartridge temperature ≥ 5°C bled Maximum processing time 20 min 10 min 6 min 3 min	Minimum curing time in dry concrete ¹⁾ 4:00 h 2:00 h 1:00 h 40 min

Injection System VMZ dynamic

Intended use Processing time and curing time Annex B4

Installation instructions	 Through-setting installation (continuation) 	
Injection		
3	Check minimum shelf-life on VMZ cartridge. Never use when ex cap from VMZ cartridge. Screw static mixer on cartridge. When a cartridge always use a new static mixer. Never use cartridge with and never use static mixer without helix inside.	using a new
4 min.2x min. 10cm	Insert cartridge in dispenser. Before injecting discard mortar (at l or a line of 10 cm) until it shows a consistent grey colour. Never	
5	Prior to injection, check if static mixer reaches the bottom of the not reach the bottom, plug mixer extension onto static mixer, in o fill the drill hole. Fill hole with a sufficient quantity of injection mo bottom of the drill hole and work out to avoid trapping air pockets	order to properly rtar. Start from the
Insertion of anchor rod		
6	Insert the pre-assembled anchor within processing time by hand up to the full embedment depth, until the conical washer is in co fixture. The anchor rod is properly set when the annular gap bet and fixture is completely filled. If no mortar is visible on the surfa pull out the anchor rod immediately, let the mortar cure, drill out again from step 2.	ntact with the ween anchor rod ace of the fixture,
7	Follow minimum curing time shown in Annex B4 as well as on ca During curing time anchor rod must not be moved or loaded.	artridge label.
8	Remove excess mortar after curing time. Remove locknut.	
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Injection System VMZ dy	namic	
Intended use Installation instructions – Thre	ough-setting installation (continuation)	Annex B6

Drill perpendicular to concrete surface with hammer drill, vacuum drill compressed air drill.
Drill hole must be cleaned directly prior to installation of the anchor
zes <u>Cleaning with compressed air</u>
min. 6 bar 2x Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.
Check diameter of Cleaning Brush. If brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. Turn on drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine.
connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times .
M16 <u>Manual cleaning</u> (alternative cleaning method)
Blow out drill hole from the bottom using Blow-out Pump at least two times .
Check diameter of Cleaning Brush. If brush can be pushed into the drill hol without any resistance, it must be replaced. Chuck brush into drill machine. Tur on drill machine. Brush drill hole back and forth along the entire drill hole dept at least two times while rotated by drill machine.
Blow out drill hole from the bottom using Blow-out Pump at least two times .

Intended use Installation instructions – Pre-setting installation Annex B7

Г

٦

nje	ction		
3	THE REPORT	Check minimum shelf-life on VMZ cartridge. Never use when exp from VMZ cartridge. Screw static mixer on cartridge. When usir always use a new Mixer Nozzle. Never use cartridge without stat use static mixer without helix inside.	ng a new cartridge
4	min.2x => min. 10cm	Insert cartridge in Dispenser. Before injecting discard mortar (at or a line of 10 cm) until it shows a consistent grey colour. Never use this mortar.	least 2 full stroke
5		Prior to injection check if static mixer reaches the bottom of the not reach the bottom, plug mixer extension onto static mixer in o the drill hole. Fill hole with a sufficient quantity of injection mor bottom of the drill hole and work out to avoid trapping air pockets	rder to properly fi tar. Start from the
nse	ertion of anchor rod		
6		Mark the embedment depth on the anchor rod. Insert the and rotating slightly up within processing time. The anchor rod is excess mortar seeps from the hole. If the hole is not complet anchor rod, let mortar cure, drill out hole and start again from ste	properly set when tely filled, pull ou
7	Contraction of the second seco	Follow minimum curing time shown in Annex B4 as well as o During curing time anchor rod must not be moved or loaded.	on cartridge labe
8		Remove excess mortar after curing time.	
9		 Fixture, washer and nut (without centring ring) can be mounted. Apply installation torque T_{inst} according to Table B1 by using to wrench. Screw on locknut hand-tight then tighten ¹/₄ to ¹/₂ turn using a statement. 	orque
10		Annular gap between anchor rod and fixture must be filled with in through the bore of the conical washer using the adapter plugge mixer. The annular gap is properly filled when excess mortar seeps out	d onto the static
nie	ction System VMZ dyı	namic	

Г

Work steps	1 - 5 as illustrated in Annex B5 and B6							
Insertion of anchor rod								
6	Inserting the pre-assembled anchor within processing time by hand, rotati conical washer lies against the fixture.	ng slightly until the						
7	Check for excess mortar seeping out of the hole. If the hole is not complete anchor rod, let mortar cure, drill out hole and start again from step 2. The annular gap in the fixture does not have to be filled.	etely filled, pull out						
8	Follow minimum curing time shown in Annex B4 as well as on cartridge lab time anchor rod must not be moved or loaded.	el. During curing						
9	Remove locknut after curing time and backfilling of anchor plate.							
10	T _{inst} 1. Apply installation torque T _{inst} according to Annex B2 (Table B1) by using 2. Screw on locknut hand-tight then tighten ¼ to ½ turn using a screw wrer							
Injection \$	ystem VMZ dynamic							
Intended us		Annex B9						

L

Table C1: Characteristic values of the fatigue resistance under tension load after nload cycles without static actions (FElod = 0)design method I according to TR 061

Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCR	170 M20		
Steel failure									
Characteristic resistance without static actions	e	[kN]			$\Delta \mathbf{N}_{Rk,s,0,n}$				
		1	53,9	53,9	83,4	83,4	112,1		
		≤ 10 ³	48,3	52,6	78,8	72,5	92,7		
		≤ 3·10 ³	45,9	50,9	77,1	68,2	89,9		
		≤ 10 ⁴	41,4	47,6	73,1	62,4	83,4		
Number of load cycles r	ו	≤ 3·10 ⁴	35,9	42,8	66,3	56,7	73,8		
		≤ 10 ⁵	29,1	36,3	55,8	50,5	60,9		
		≤ 3·10 ⁵	24,2	30,1	45,5	45,7	50,7		
		≤ 10 ⁶	21,1	24,9	37,4	41,8	44,9		
		> 10 ⁶	20,1	21,2	34,0	37,3	43,5		
Partial factor	γMs,fat,r	n [-]		accord	ding to TR 06	1, Eq. (3)			
Exponent for combined loading	$lpha_{\sf sr}$	n [-]	1,5	1,2	1,5	1,5	1,5		
Pull-out									
Characteristic resistance without $\Delta N_{Rk,p,0,n}$ [kN]static actions			(Δ N _{Rk,s,0,n} / γ _{Ms,fat,n}) · γ _{Mp,fat}						
Partial factor	γMp,fa	t [-]	1,5						
Concrete failure									
Characteristic resistance without –	$\Delta N_{Rk,c,0,r}$	n [kN]	η k,c,N,fat,n \cdot $N_{\text{Rk,c}}$ 1)						
	$\Delta \mathbf{N}_{Rk,sp,0,r}$	1 [kN]		r	k,c,N,fat,n $\cdot \mathbf{N}_{R}$	k,sp ¹⁾			
Reduction factor		[-]			η k,c,N,fat,n				
		1			1,0				
		≤ 10 ³			0,932				
		$\leq 3 \cdot 10^3$							
Number of load cycles r	、——	≤ 10 ⁴ ≤ 3·10 ⁴	,						
Number of load cycles i	I	<u>≤ 3.10°</u> ≤ 10 ⁵			0,794				
		≤ 3·10 ⁵			0,700				
		≤ 10 ⁶			0,704				
		> 10 ⁶							
Effective anchorage depth	h _{ef}	[mm]		100		125	170		
Partial factor	γMc,fat	[-]			1,5				
Exponent for combined loading	ας	[-]			1,5				

Injection System VMZ dynamic

Performance

Characteristic fatigue resistance under tension load, design method I according to TR 061

Table C2: Characteristic values of the fatigue resistance under shear load after n load cycles without static actions (FElod = 0) design method I according to TR 061

$ [kN] 1 \leq 10^3 \leq 3.10^3 \leq 10^4 \leq 3.10^4 \leq 10^5 $	27,6 23,8 18,6	34,0 31,3 28,3		63,0	140.0		
1 $\leq 10^{3}$ $\leq 3 \cdot 10^{3}$ $\leq 10^{4}$ $\leq 3 \cdot 10^{4}$	27,6 23,8 18,6	31,3		63,0	140.0		
$\leq 3 \cdot 10^3$ $\leq 10^4$ $\leq 3 \cdot 10^4$	27,6 23,8 18,6	31,3		63,0	140.0		
$\leq 3 \cdot 10^3$ $\leq 10^4$ $\leq 3 \cdot 10^4$	23,8 18,6	-	:		149,0		
≤ 10 ⁴ ≤ 3·10 ⁴	18,6	28.3		54,0	113,5		
≤ 3·10 ⁴		_==,=		47,2	91,6		
		23,5		36,5	65,0		
≤ 10 ⁵	14,1	18,1		26,2	43,9		
	10,5	12,8		18,4	29,0		
≤ 3·10 ⁵	8,9	9,8		15,6	23,2		
					21,3 21,1		
> 10 ⁶	8,2 15,0						
s,fat,n [-]		accord	ling TR 061, E	Eq. (3)			
α _{sn} [-]	1,5	1,2	1,5	1,5	1,5		
_{cp,0,n} [kN]	η k,c,V,fat,n \cdot VRk,cp ¹⁾						
_{k,c,0,n} [kN]	η k,c,V,fat,n \cdot VRk,c ¹⁾						
[-]	ηk,c,N,fat,n						
1	1,0						
≤ 10 ³	0,799						
≤ 3·10 ³	0,760						
≤ 10 ⁴	0,725						
≤ 3·10 ⁴							
	100				170		
					24		
α _c [-]	1,5						
Ψεν [-]			0,81				
	$ \leq 10^{6} \\ > 10^{6} \\ \ > 10^{6} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \leq 10^{6} 8,2 \\ > 10^{6} \\ \hline \\ s,fat,n [-] \\ \hline \\ \alpha_{sn} [-] \\ 1,5 \\ \hline \\ \alpha_{sn} [-] \\ 1,5 \\ \hline \\ \alpha_{sn} [KN] \\ \hline \\ [-] \\ 1 \\ \leq 10^{3} \\ \hline \\ \leq 3.10^{3} \\ \hline \\ \leq 3.10^{3} \\ \hline \\ \leq 3.10^{4} \\ \hline \\ \leq 3.10^{4} \\ \hline \\ \leq 3.10^{5} \\ \hline \\ \leq 3.10^{5} \\ \hline \\ \leq 3.10^{6} \\ \hline \\ r [mm] \\ \hline \\ d_{nom} [mm] \\ \hline \\ mc,fat [-] \\ \hline \\ \alpha_{c} [-] \\ \hline \\ \hline \\ \end{tabular} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

Injection System VMZ dynamic

Performance

Characteristic fatigue resistance under shear load for design method I according to TR 061

Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCF	1 1 7 1 1 1 1 1 2 1
Tension load							
Steel failure							
Characteristic fatigue resistance	∆ N Rk,s,0,∞	[kN]	20,1	21,2	34,0	37,3	43,5
Partial factor	γMs,fat	[-]			1,35		
Load-transfer factor for fastener groups	ΨFN	[-]			0,79		
Pull-out			1				
Characteristic fatigue resistance	∆ N Rk,p,0,∞	[kN]		(∆N _{Rk}	_{.s,0,∞} / γMs,N,fa	t)・γMp,fat	
Partial factor	γMp,fat	[-]			1,5		
Concrete failure							
Characteristic fatigue	∆ N Rk,c,0,∞	[kN]			0,693 N _{Rk,c}	, 1)	
resistance	∆ N Rk,sp,0,∞	[kN]			0,693 N _{Rk,s}	p ¹⁾	
Effective anchorage depth	h _{ef}	[mm]		100		125	170
Partial factor	γMc,fat	[-]			1,5		
Shear load							
Steel failure without leve	r arm						-
Characteristic fatigue resistance	∆V _{Rk,s,0,∞}	[kN]		8,2		15,0	21,1
Partial factor	γ́Ms,fat	[-]			1,35		
Load-transfer factor for fastener groups	Ψεν	[-]	0,81				
Concrete pry-out failure							
Characteristic fatigue resistance	∆V _{Rk,cp,0,∞}	[kN]			0,652 V _{Rk,q}	p 1)	
Partial factor	γMc,fat	[-]			1,5		
Concrete edge failure							
Characteristic fatigue resistance	∆V _{Rk,c,0,∞}	[kN]			0,652 V _{Rk,c}	1)	_
Effective length of anchor	lf	[mm]		100		125	170
Outside diameter of anchor	d _{nom}	[mm]		14		18	24
Partial factor	γMc,fat	[-]			1,5		
Exponents for combined	α_{s}	[-]	1,5	1,2		1,5	1,5
loading	ας	[-]			1,5		-
		-					

Anchor s	ize / version			100 M12 100 M12 A4 100 M12 HCR	125 M16 125 M16 A4 125 M16 HCR	170 M20
Steel fail	ure					
Characte	ristic resistance	N _{Rk,s} N _{Rk,s,C1} N _{Rk,s,C2}	[kN]	57	111	188
Partial fac	ctor	γMs	[-]		1,5	
Pull-out f	failure					
	uncracked concrete	N _{Rk,p}	[kN]	49,2	68,8	109
Character resistance		N _{Rk,p}	[kN]	34,4	48,1	76,3
(C20/25)	seismic C1	NRk,p,C1	[kN]	36,0	43,7	88,2
()	seismic C2	N _{Rk,p,C2}	[kN]	17,6	26,1	59,7
Concrete	cone failure					
Characte	ristic edge distance	C _{cr,N}	[mm]		1,5 • h _{ef}	
Eactor k1	uncracked concrete	k _{ucr,N}	[-]		11,0	
Factor k1 cracked concrete		k _{cr,N}	[-]		7,7	
Effective anchorage depth						
Splitting		h _{ef}	[mm]	100	125	170
Splitting For each higher val	proof of splitting failure, N _{Rk} , ue for N _{Rk,sp} of case 1 and c thickness of concrete	_{sp} shall be	calcula	ited according to EN	l 1992-4:2018, equat	
Splitting For each higher val	proof of splitting failure, N _{Rk} , ue for N _{Rk,sp} of case 1 and c thickness of concrete Characteristic resistance (C20/25)	_{sp} shall be ase 2 ma	calcula y be ap	ited according to EN plied for the design.	l 1992-4:2018, equat	ion (7.23). The
Splitting For each higher val Standard	proof of splitting failure, N _{Rk} , ue for N _{Rk,sp} of case 1 and c thickness of concrete Characteristic resistance (C20/25) Characteristic edge distance	_{sp} shall be case 2 ma h _{min,1} ≥ N ⁰ _{Rk,sp} C _{cr,sp}	calcula y be ap [mm] [kN] [mm]	ited according to EN plied for the design. 200	l 1992-4:2018, equat 250 50 1,5 ∙ h _{ef}	ion (7.23). The 340
Splitting For each higher val Standard Case 1	proof of splitting failure, N _{Rk} , ue for N _{Rk,sp} of case 1 and c thickness of concrete Characteristic resistance (C20/25) Characteristic edge distance Characteristic resistance	_{sp} shall be case 2 ma h _{min,1} ≥ N ⁰ Rk,sp	e calcula y be ap [mm] [kN]	ited according to EN plied for the design. 200	1992-4:2018, equat 250 50	ion (7.23). The 340
Splitting For each <u>higher val</u> Standard Case 1 Case 2	proof of splitting failure, N_{Rk} , ue for $N_{Rk,sp}$ of case 1 and contrast of thickness of concrete (C20/25) Characteristic resistance (C20/25) Characteristic edge distance Characteristic resistance Characteristic edge distance	_{sp} shall be case 2 ma h _{min,1} ≥ N ⁰ _{Rk,sp} C _{cr,sp}	calcula y be ap [mm] [kN] [mm]	ted according to EN plied for the design. 200 40 2 • h _{ef}	l 1992-4:2018, equat 250 50 1,5 • h _{ef} min [N _{Rk,p} ; N ⁰ _{Rk,c}] 2• h _{ef}	ion (7.23). The 340 109 1,5 ∙ h _{ef}
Splitting For each <u>higher val</u> Standard Case 1 Case 2	proof of splitting failure, N_{Rk} , ue for $N_{Rk,sp}$ of case 1 and of thickness of concrete Characteristic resistance (C20/25) Characteristic edge distance Characteristic resistance Characteristic edge distance thickness of concrete	sp shall be case 2 ma h _{min,1} ≥ N ⁰ _{Rk,sp} C _{cr,sp}	calcula y be ap [mm] [kN] [mm] [kN]	ited according to EN plied for the design. 200 40	l 1992-4:2018, equat 250 50 1,5 • h _{ef} min [N _{Rk,p} ; N ^o _{Rk,c}]	ion (7.23). The 340 109
Splitting For each higher val Standard Case 1 Case 2 Minimum	proof of splitting failure, N_{Rk} , ue for $N_{Rk,sp}$ of case 1 and of thickness of concrete Characteristic resistance (C20/25) Characteristic edge distance Characteristic resistance Characteristic edge distance thickness of concrete Characteristic resistance (C20/25)	sp shall be case 2 ma h _{min,1} ≥ N ⁰ _{Rk,sp} C _{cr,sp} C _{cr,sp}	calcula y be ap [mm] [kN] [mm] [kN] [mm]	ted according to EN plied for the design. 200 40 2 • h _{ef}	l 1992-4:2018, equat 250 50 1,5 • h _{ef} min [N _{Rk,p} ; N ⁰ _{Rk,c}] 2• h _{ef}	ion (7.23). The 340 109 1,5 ∙ h _{ef}
Splitting For each <u>higher val</u> Standard Case 1 Case 2	proof of splitting failure, N_{Rk} , ue for $N_{Rk,sp}$ of case 1 and c thickness of concrete Characteristic resistance (C20/25) Characteristic edge distance Characteristic resistance Characteristic edge distance thickness of concrete Characteristic resistance (C20/25) Characteristic resistance (C20/25) Characteristic resistance (C20/25) Characteristic resistance (C20/25)	sp shall be case 2 ma h _{min,1} ≥ N ⁰ Rk,sp C _{cr,sp} N ⁰ Rk,sp C _{cr,sp} h _{min,2} ≥	e calcula y be ap [mm] [kN] [mm] [kN] [mm]	ited according to EN plied for the design. 200 40 2 • h _{ef} 130	l 1992-4:2018, equat 250 50 1,5 • h _{ef} min [N _{Rk,p} ; N ⁰ _{Rk,c}] 2• h _{ef} 160	ion (7.23). The 340 109 1,5 ∙ h _{ef} 220
Splitting For each higher val Standard Case 1 Case 2 Minimum Case 1	proof of splitting failure, N _{Rk} , ue for N _{Rk,sp} of case 1 and of thickness of concrete Characteristic resistance (C20/25) Characteristic edge distance Characteristic resistance Characteristic edge distance thickness of concrete Characteristic resistance (C20/25) Characteristic resistance (C20/25) Characteristic resistance (C20/25) Characteristic edge distance Characteristic	sp shall be case 2 ma h _{min,1} ≥ N ⁰ _{Rk,sp} C _{cr,sp} N ⁰ _{Rk,sp} C _{cr,sp} h _{min,2} ≥ N ⁰ _{Rk,sp}	calcula y be ap [mm] [kN] [mm] [kN] [mm] [kN]	ited according to EN plied for the design. 200 40 2 • h _{ef} 130	l 1992-4:2018, equat 250 50 1,5 • h _{ef} min [N _{Rk,p} ; N ⁰ _{Rk,c}] 2• h _{ef} 160 40	ion (7.23). The 340 109 1,5 ∙ h _{ef} 220
Splitting For each higher val Standard Case 1 Case 2 Minimum	proof of splitting failure, N_{Rk} , ue for $N_{Rk,sp}$ of case 1 and c thickness of concrete Characteristic resistance (C20/25) Characteristic edge distance Characteristic resistance Characteristic edge distance thickness of concrete Characteristic resistance (C20/25) Characteristic resistance (C20/25) Characteristic resistance (C20/25) Characteristic resistance (C20/25)	sp shall be case 2 ma h _{min,1} ≥ N ⁰ _{Rk,sp} C _{cr,sp} N ⁰ _{Rk,sp} C _{cr,sp} h _{min,2} ≥ N ⁰ _{Rk,sp}	calcula y be ap [mm] [kN] [mm] [kN] [mm] [kN]	ited according to EN plied for the design. 200 40 2 • h _{ef} 130	l 1992-4:2018, equat 250 50 1,5 • h _{ef} min [N _{Rk,p} ; N ⁰ _{Rk,c}] 2• h _{ef} 160 40 1,5 • h _{ef}	ion (7.23). The 340 109 1,5 ∙ h _{ef} 220
Splitting For each higher val Standard Case 1 Case 2 Minimum Case 1 Case 2 Increasing	proof of splitting failure, N_{Rk} , ue for $N_{Rk,sp}$ of case 1 and of thickness of concrete Characteristic resistance (C20/25) Characteristic edge distance Characteristic resistance Characteristic edge distance thickness of concrete Characteristic resistance (C20/25) Characteristic resistance (C20/25) Characteristic resistance (C20/25) Characteristic edge distance Characteristic edge distance Characteristic resistance Characteristic resistance	sp shall be case 2 ma h _{min,1} ≥ N ⁰ _{Rk,sp} C _{cr,sp} h _{min,2} ≥ N ⁰ _{Rk,sp} C _{cr,sp} N ⁰ _{Rk,sp}	calcula y be ap [mm] [kN] [mm] [kN] [mm] [kN] [mm] [kN]	ited according to EN plied for the design. 200 40 2 • h _{ef} 130 30	l 1992-4:2018, equat 250 50 1,5 • h _{ef} min [N _{Rk,p} ; N ⁰ _{Rk,c}] 2• h _{ef} 160 40 1,5 • h _{ef} min [N _{Rk,p} ; N ⁰ _{Rk,c}]	ion (7.23). The 340 109 1,5 • h _{ef} 220 75

Injection System VMZ dynamic

Performance

Characteristic values for tension load under static and quasi static or seismic action

Anchor size / version			100 M12 100 M12 A4 100 M12 HCR	125 M16 125 M16 A4 125 M16 HCR	170 M20
Steel failure without lever arm					
	V ⁰ Rk,s	[kN]	34	63	149
Characteristic resistance	V^0 Rk,s,C1	[kN]	27,2	39,1	82,3
	V ⁰ Rk,s,C2	[kN]	27,2	50,4	108,8
Partial factor	γMs	[-]		1,25	
Ductility factor	k 7	[-]		1,0	
Steel failure with lever arm					
Characteristic bending resistance	M^0 Rk,s	[Nm]	105	266	519
Partial factor	γMs	[-]		1,25	
Concrete pry-out failure					
Pry-out factor	k ₈	[-]		2,0	
Concrete edge failure					
Effective length of anchor in shear load	lf	[mm]	100	125	170
Diameter of anchor	d _{nom}	[mm]	14	18	24
Installation factor	γinst	[-]		1,0	
Factor for anchorages with filled annular gap	$lpha_{gap}$	[-]		1,0	

Injection System VMZ dynamic

Performance

filled annular gap

Characteristic values under shear load for static and quasi-static or seismic action

Table C6: Displacements under tension load for static and quasi-static or seismic action								
Anchor size / version			100 M12 100 M12 A4 100 M12 HCR	125 M16 125 M16 A4 125 M16 HCR	170 M20			
Tension load in cracked concrete	Ν	[kN]	17,1	24	38			
Dianlagomenta	δνο	[mm]	0,6	0,7	0,8			
Displacements	δ _{N∞}	[mm]	1,3	1,3	1,3			
Tension load in uncracked concrete	N	[kN]	24	33	53,3			
Displacements	δησ	[mm]	0,4	0,6	0,6			
Displacements $\delta_{N_{N_{i}}}$		[mm]	1,3	1,3	1,3			
Displacements under seismic tension loads C2								
Displacements	$\delta_{\text{N,C2(DLS)}}$	[mm]	1,1	1,5	1,9			
Displacements –	$\delta_{\text{N,C2}(\text{ULS})}$	[mm]	3,0	4,4	4,5			

Table C7: Displacements under shear load for static and quasi-static or seismic action

Anchor size / version			100 M12 100 M12 A4 100 M12 HCR	125 M16 125 M16 A4 125 M16 HCR	170 M20	
Shear load	V	[kN]	19,3	36	75	
Dianlagomente	δνο	[mm]	3,3	3,8	4,3	
Displacements	δv∞	[mm]	5,0	5,7	6,5	
Displacements under seismic shear loads C2						
Dianlagamenta	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,5	2,9	3,5	
Displacements	$\delta_{V,C2(ULS)}$	[mm]	5,1	6,8	9,3	

Injection System VMZ dynamic

Performance

Displacements under static and quasi-static or seismic action