

# Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

| UK Technical Assessment                                                                                                                          | UKTA-0836-22/6210 of 02/09/2022                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Technical Assessment Body issuing the UK Technical Assessment:                                                                                   | British Board of Agrément                                                                                        |
| Trade name of the construction product:                                                                                                          | Injection System VMZ                                                                                             |
| Product family to which the construction product belongs:                                                                                        | Torque controlled bonded anchor with anchor<br>rod VMZ-A and internal threaded rod VMZ-IG<br>for use in concrete |
| Manufacturer:                                                                                                                                    | MKT-Metall-Kunststoff-Technik GmbH & Co. KG<br>Auf dem Immel 2<br>67685 Weilerbach<br>Germany                    |
| Manufacturing plant(s):                                                                                                                          | Plant 1, D<br>Plant 2, D                                                                                         |
| This UK Technical Assessment contains:                                                                                                           | 33 pages including 3 annexes which form an integral part of this assessment                                      |
| This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of: | UKAD 330499-01-0601: Bonded fasteners for use in concrete                                                        |

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

#### 1 Technical description of the product

The Injection System VMZ is a torque controlled bonded anchor consisting of a cartridge with injection mortar VMZ or VMZ Express and an anchor rod with expansion cones and external connection thread (type VMZ-A) or with internal connection thread (type VMZ-IG).

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

#### 2 Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance                 |
|------------------------------------------------------------------------------------------|-----------------------------|
| Characteristic resistance to tension load (static and quasi static loading)              | Annex C1-C3, C10, B5 and B6 |
| Characteristic resistance to shear load (static and quasi static loading)                | Annex C4, C5 and C11        |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | Annex C6-C9                 |
| Displacements under short-term and long-term loading                                     | Annex C8, C9 and C11        |

#### 3.2 Safety in case of fire (BWR 2)

Not relevant

#### 3.3 Hygiene, health and the environment (BWR 3)

| Essential characteristic                      | Performance             |
|-----------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous | No performance assessed |
| substances                                    |                         |

#### 3.4 Safety and accessibility in use (BWR 4)

Not relevant

3.5 Protection against noise (BWR 5)

Not relevant

3.6 Energy economy and heat retention (BWR 6)

Not relevant

3.7 Sustainable use of natural resources (BWR 7)

Performance not assessed

# 4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

According to UKAD No. 330499-01-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

#### 5.1 UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.

On behalf of the British Board of Agrément

Λ

Date of Issue: 2 September 2022

Hardy Giesler Chief Executive Officer



British Board of Agrément, 1<sup>st</sup> Floor Building 3,

Hatters Lane, Croxley Park Watford WD18 8YG



| ANNEX A2                                                       |
|----------------------------------------------------------------|
| Product description / Cartridges, cleaning tools, anchor types |



| ANNEX A3            |                    |                   |
|---------------------|--------------------|-------------------|
| Product description | VMZ-A : Materials, | marking of length |

| Table           | e A1: Materia                                                                                                                | als VMZ-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                  |                                       |                               |                             |                |                              |                          |                         |                                             |                               |                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|---------------------------------------|-------------------------------|-----------------------------|----------------|------------------------------|--------------------------|-------------------------|---------------------------------------------|-------------------------------|----------------|
|                 |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                     | teel, zi                         | nc plat                               | ed                            |                             |                |                              |                          |                         |                                             |                               |                |
| Part            | Designation                                                                                                                  | galvanis<br>≥ 5µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed 2                  | hot-<br>galvai<br>40µm<br>in ave | <b>dip</b><br>nised<br>(50µm<br>rage) | sh                            | ierardiz<br>≥ 45µn          | zed<br>n       | Stainle<br>/<br>(CR          | ess ste<br>A4<br>RC III) | el<br>re                | High o<br>esistan<br>(C                     | corrosi<br>t steel<br>RC V)   | on<br>HCR      |
|                 |                                                                                                                              | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | teel ac               | c. to EN                         | I ISO 6                               | 83-1:2                        | 018                         |                | Stainles 1.4401,             | s steel<br>1.4404        | , Hig<br>, res          | gh corro<br>sistant s                       | osion<br>steel                |                |
| 1               | Anchor rod                                                                                                                   | galvanised<br>and coated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l h<br>d g<br>c       | ot-dip<br>jalvanis<br>coated     | ed and                                | l she<br>and                  | erardize<br>l coate         | ed<br>d        | 1.4571,<br>EN 1008<br>coated | 88:201                   | 1.4<br>4, EN<br>co      | 1529, 1.<br>I 10088<br>ated                 | 4565<br>2014,                 |                |
| 2a              | Washer                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                       |                               |                             |                | Stainles                     | s steel                  | Hig                     | gh corro<br>sistant s                       | osion<br>steel                |                |
| 2b              | Washer with<br>bore                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                     | Steel, z                         | inc plat                              | ed                            |                             |                | EN 1008                      | 38:2014                  | 4 1.4<br>EN             | 1529, 1.<br>1 10088                         | 4565<br>2014                  |                |
|                 |                                                                                                                              | Propert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y class               | s 8 acc.                         | to EN                                 | ISO 89                        | 8-2:20                      | 12             | EN ISO<br>2020, A            | 3506-2<br>4-70.          | EN<br>Pro               | I ISO 3<br>operty o                         | 506-2:2<br>class 7(           | 2020,<br>),    |
| 3               | Hexagon nut                                                                                                                  | galvanised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l h<br>g              | iot-dip<br>jalvanis              | ed                                    | she<br>hot<br>gal             | erardize<br>-dip<br>vaniseo | ed or<br>d     | A4-80<br>1.4401,<br>EN 1008  | 1.4571<br>38:2014        | hig<br>res<br>1.4<br>EN | h corro<br>sistant s<br>1529, 1.<br>I 10088 | sion<br>steel<br>4565<br>2014 |                |
| 4               | Mortar<br>cartridge                                                                                                          | Vinylester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | resin,                | styrene                          | free, n                               | nixing r                      | atio 1:1                    | 10             |                              |                          |                         |                                             |                               |                |
| Marki           | ng e.g.<br>identifying r<br>anchorage de<br>fastener iden<br>size of thread<br>maximum thi<br>additional ma<br>additional ma | 80 VM2 80 VM2 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D <pd< p=""> &lt;</pd<></pd<></pd<></pd<></pd<></pd<></pd<></pd<> | ture t <sub>fix</sub> | (when the sion res               | ant<br>using w                        | Marking<br>Anchor<br>2a 3<br> | g of<br>rage de             | pth<br>        | t <sub>fix</sub>             | Washe                    | or with                 | Marking –<br>of length                      | 2b                            |                |
| Mark            | ing of length                                                                                                                | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                     | D                                | Е                                     | F                             | G                           | Н              | I                            | J                        | К                       | L                                           | М                             | Ν              |
| Length<br>ancho | n of <u>min</u><br>r max                                                                                                     | ≥ 50,8<br>< 63,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63,5<br>76,2          | 76,2<br>88,9                     | 88,9<br>101,6                         | 101,6<br>114,3                | 114,3<br>127,0              | 127,0<br>139,7 | ) 139,7<br>7 152,4           | 152,4<br>165,1           | 165,1<br>177,8          | 177,8<br>190,5                              | 190,5<br>203,2                | 203,2<br>215,9 |
| Mark            | ing of length                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р                     | Q                                | R                                     | S                             | Т                           | U              | V                            | W                        | Х                       | Y                                           | Ζ                             | >Z             |
| Length<br>ancho | n of <u>min</u><br>r max                                                                                                     | ≥ 215,9<br>< 228,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 228,6<br>241,3        | 241,3<br>254,0                   | 254,0<br>279,4                        | 279,4<br>304,8                | 304,8<br>330,2              | 330,2<br>355,6 | 2 355,6<br>3 381,0           | 381,0<br>406,4           | 406,4<br>431,8          | 431,8<br>457,2                              | 457,2<br>482,6                | 482,6          |

| ANNEX   | A4            |                |            |
|---------|---------------|----------------|------------|
| Product | description / | VMZ-A / Anchor | dimensions |

| Т | ab | le A2  | 2: Dimensions of ancho                                         | r rod, V            | MZ-A N              | 18 – M1             | 2                   |                     |                     |                          |                          |                          |                          |                          |
|---|----|--------|----------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| ł | ٩n | chor   | size VMZ-A                                                     | 40<br>M8            | 50<br>M8            | 60<br>M10           | 75<br>M10           | 75<br>M12           | 70<br>M12           | 80<br>M12                | 95<br>M12                | 100<br>M12               | 110<br>M12               | 125<br>M12               |
| A | ٩d | dition | al marking                                                     | 1                   | 2                   | 1                   | 2                   | 1                   | 2                   | 3                        | 4                        | 5                        | 6                        | 7                        |
|   |    |        | Thread                                                         | N                   | 18                  | М                   | 10                  |                     |                     |                          | M12                      |                          |                          |                          |
|   |    |        | Number of cones                                                | 2                   | 3                   | 3                   | 3                   | 3                   | 3                   | 4                        | 4                        | 6                        | 6                        | 6                        |
|   |    | r rod  | d <sub>k</sub> =                                               | 8.0                 | 8.0                 | 9.7                 | 9.7                 | 10.7                | 12.5                | 12.5                     | 12.5                     | 12.5                     | 12.5                     | 12.5                     |
|   | 1  | Ancho  | Length L<br>(with washer 2a)                                   | 52+t <sub>fix</sub> | 63+t <sub>fix</sub> | 75+t <sub>fix</sub> | 90+t <sub>fix</sub> | 95+t <sub>fix</sub> | 90+t <sub>fix</sub> | 100<br>+t <sub>fix</sub> | 115<br>+t <sub>fix</sub> | 120<br>+t <sub>fix</sub> | 130<br>+t <sub>fix</sub> | 145<br>+t <sub>fix</sub> |
|   |    | _      | Reduction t <sub>fix</sub> 1)<br>(with washer with bore<br>2b) | 3.4                 | 3.4                 | 3                   | 3                   | 2.5                 | 2.5                 | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      |
| 3 | 3  | Hexa   | agon nut SW                                                    | 13                  | 13                  | 17                  | 17                  | 19                  | 19                  | 19                       | 19                       | 19                       | 19                       | 19                       |

<sup>1)</sup> When using washer with bore (2b) the thickness of fixture is reduced by the specified value.

Dimensions in mm

### Table A3: Dimensions of anchor rod, VMZ-A M16 – M24

| Aı | nchor siz | ze VMZ-A                                                       | 90<br>M16                | 105<br>M16               | 125<br>M16               | 145<br>M16               | 160<br>M16               | 115<br>M20               | 170<br>M20<br>(LG)       | 190<br>M20<br>(LG)       | 170<br>M24<br>(LG)       | 200<br>M24<br>(LG)       | 225<br>M24<br>(LG)       |
|----|-----------|----------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Ad | ditional  | marking                                                        | 1                        | 2                        | 3                        | 4                        | 5                        | 1                        | 2                        | 3                        | 1                        | 2                        | 3                        |
|    |           | Thread                                                         |                          |                          | M16                      |                          |                          |                          | M20                      |                          |                          | M24                      |                          |
|    |           | Number of cones                                                | 3                        | 4                        | 6                        | 6                        | 6                        | 3                        | 6                        | 6                        | 6                        | 6                        | 6                        |
|    | r roc     | d <sub>k =</sub>                                               | 16.5                     | 16.5                     | 16.5                     | 16.5                     | 16.5                     | 19.7                     | 22.0                     | 22.0                     | 24.0                     | 24.0                     | 24.0                     |
| 1  | Ancho     | Length L<br>(with washer 2a)                                   | 114<br>+t <sub>fix</sub> | 129<br>+t <sub>fix</sub> | 150<br>+t <sub>fix</sub> | 170<br>+t <sub>fix</sub> | 185<br>+t <sub>fix</sub> | 143<br>+t <sub>fix</sub> | 203<br>+t <sub>fix</sub> | 223<br>+t <sub>fix</sub> | 210<br>+t <sub>fix</sub> | 240<br>+t <sub>fix</sub> | 265<br>+t <sub>fix</sub> |
|    | -         | Reduction t <sub>fix</sub> 1)<br>(with washer with<br>bore 2b) | 2                        | 2                        | 2                        | 2                        | 2                        | 2                        | 2                        | 2                        | 2                        | 2                        | 2                        |
| 3  | Hexago    | on nut SW                                                      | 24                       | 24                       | 24                       | 24                       | 24                       | 30                       | 30                       | 30                       | 36                       | 36                       | 36                       |

<sup>1)</sup> When using washer with bore (2b) the thickness of fixture is reduced by the specified value.

Dimensions in mm

#### ANNEX A5 Product description / VMZ-IG / Anchor dimensions

| Tabl  | e A4: Materials     | VMZ-IG                                                       |                                                                             |                                                                                   |
|-------|---------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Part  | Designation         | Steel, zinc plated ≥ 5µm                                     | Stainless steel A4<br>(CRC III)                                             | High corrosion resistant<br>steel HCR<br>(CRC V)                                  |
| 1     | Anchor rod          | Steel acc. To<br>EN ISO 683-4:2018,<br>galvanized and coated | Stainless steel, 1.4401,<br>1.4404, 1.4571 acc. To<br>EN 10088:2014, coated | High corrosion resistant steel<br>1.4529, 1.4565 acc. To<br>EN 10088:2014, coated |
| 4     | Mortar<br>cartridge | Vinylest                                                     | ter resin, styrene free, mixing ra                                          | atio 1:10                                                                         |
| Marki | ng: e.g. $>$ 80     | VMZ M10                                                      |                                                                             |                                                                                   |



## $\bigcirc$ identifying mark of manufacturing plant

- 80 anchorage depth
- VMZ fastener identity
- M10 size of internal thread
- A4 additional marking of stainless steel
- HCR additional marking of high corrosion resistant steel

### Table A4: Dimensions of anchor rod VMZ-IG

| Anchor size       | VMZ             | Z-IG | 40<br>M6                | 50<br>M6                | 60<br>M8                  | 75<br>M8                  | 70<br>M10               | 80<br>M10               | 90<br>M12                 | 105<br>M12                          | 125<br>M12                | 115<br>M16             | 170<br>M16             | 170<br>M20 |
|-------------------|-----------------|------|-------------------------|-------------------------|---------------------------|---------------------------|-------------------------|-------------------------|---------------------------|-------------------------------------|---------------------------|------------------------|------------------------|------------|
| Internal thread   |                 | -    | Ν                       | 16                      | N                         | 18                        | М                       | 10                      |                           | M12                                 |                           | M                      | 16                     | M20        |
| Number of cones   |                 | -    | 2                       | 3                       | 3                         | 3                         | 3                       | 4                       | 3                         | 4                                   | 6                         | 3                      | 6                      | 6          |
| Outer diameter    | dĸ              | [mm] | 8.0                     | 8.0                     | 9.7                       | 10.7                      | 12.5                    | 12.5                    | 16.5                      | 16.5                                | 16.5                      | 19.7                   | 22.0                   | 24.0       |
| Thread length     | $L_{\text{th}}$ | [mm] | 12                      | 15                      | 16                        | 19                        | 20                      | 23                      | 24                        | 27                                  | 30                        | 32                     | 32                     | 40         |
| Total length      | L               | [mm] | 41                      | 52                      | 63                        | 78                        | 74                      | 84                      | 94                        | 109                                 | 130                       | 120                    | 180                    | 182        |
| Length identifier |                 | [mm] | L <sub>dh</sub><br>< 18 | L <sub>dh</sub><br>> 19 | L <sub>dh</sub><br>< 22.5 | L <sub>dh</sub><br>> 23.5 | L <sub>dh</sub><br>< 27 | L <sub>dh</sub><br>> 28 | L <sub>dh</sub><br>< 31.5 | 32.5<br>< L <sub>dh</sub><br>< 34.5 | L <sub>dh</sub><br>> 35.5 | d <sub>k</sub><br>< 21 | d <sub>k</sub><br>> 21 | -          |

### Requirements of the fastening screw or the threaded rod and nut

- Minimum screw-in depth Lsdmin see Table B7
- The length of screw or the threaded rod must depending on the thickness of fixture t<sub>fix</sub>, available thread length L<sub>th</sub> (=maximum available thread length, see Table B7) and the minimum screw-in depth L<sub>sdmin</sub> be established
- A<sub>5</sub> > 8 % ductility
- Material
  - Steel, zinc plated: Minimum property class 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
  - Stainless steel A4: Minimum property class 70 according to EN ISO 3506:2020
  - High corrosion resistant steel (HCR): Minimum property class 70 according to EN ISO 3506:2020

#### ANNEX B1 Intended Use / Specifications and installation conditions

| Injection System VMZ with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | anchor rod                                                                                                                                                                      | VMZ-A                                                                                                                                                                                                    | M8                                                                 | M10                                                                          | M12                                                                        | M16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M20                                                                                | M24          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------|
| Static and guasi-static action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                 |                                                                                                                                                                                                          |                                                                    |                                                                              | \ <b>\</b>                                                                 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |              |
| Seismic action (Category C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + C2)                                                                                                                                                                           |                                                                                                                                                                                                          | -                                                                  | ✓                                                                            | ✓                                                                          | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\checkmark$                                                                       | ✓            |
| Cracked or uncracked concre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ete                                                                                                                                                                             |                                                                                                                                                                                                          |                                                                    |                                                                              | ١                                                                          | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |              |
| Strength classes acc. To EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 206-1:2013+A1:2                                                                                                                                                                 | 2016                                                                                                                                                                                                     |                                                                    |                                                                              | C20/25 t                                                                   | o C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |              |
| Reinforced or unreinforced no<br>To EN 206-1: 2013+A1:2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormal weight con                                                                                                                                                                | crete acc.                                                                                                                                                                                               |                                                                    |                                                                              | Ŷ                                                                          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |              |
| Temperature Range I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -40 °                                                                                                                                                                           | C to +80 °C                                                                                                                                                                                              | m<br>m                                                             | ax. Short<br>ax. Long                                                        | term tem<br>term tem                                                       | perature ·<br>perature ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +80 °C<br>-50 °C                                                                   |              |
| Temperature Range II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -40 °C                                                                                                                                                                          | c to +120 °C                                                                                                                                                                                             | m<br>m                                                             | ax. Short<br>ax. Long                                                        | term tem<br>term tem                                                       | perature ·<br>perature ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +120 °C<br>-72 °C                                                                  |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Han                                                                                                                                                                             | nmer drill bit                                                                                                                                                                                           |                                                                    |                                                                              | ۰                                                                          | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vacu                                                                                                                                                                            | um drill bit <sup>1)</sup>                                                                                                                                                                               | -                                                                  | ✓                                                                            | ✓                                                                          | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ✓                                                                                  | $\checkmark$ |
| Making of drill hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dian<br>(seismic actio                                                                                                                                                          | nond drill bit<br>on excluded)                                                                                                                                                                           | -                                                                  | ~                                                                            | ~                                                                          | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | √                                                                                  | ~            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (                                                                                                                                                                               | dry concrete                                                                                                                                                                                             |                                                                    |                                                                              | ١                                                                          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |              |
| Installation allowable in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                                                                                                               | vet concrete                                                                                                                                                                                             |                                                                    |                                                                              | ١                                                                          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wate                                                                                                                                                                            | er-filled hole                                                                                                                                                                                           | -                                                                  | -                                                                            | <b>√</b> 2)                                                                | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ✓                                                                                  | ✓            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                 |                                                                                                                                                                                                          |                                                                    |                                                                              |                                                                            | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |              |
| Overhead installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                          |                                                                    |                                                                              | ,                                                                          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |              |
| Overhead installation<br>Pre-setting installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |                                                                                                                                                                                                          |                                                                    |                                                                              | · · ·                                                                      | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |              |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta                                                                                                                                                                                                                                                                                                                                                                                                                                | ۱ hammer drill bit w<br>allation in water-fill                                                                                                                                  | rith suction or H<br>ed drill hole is r                                                                                                                                                                  | -<br>Ieller Dust<br>not allowe                                     | ✓<br>er Expert<br>d)                                                         | ,<br>, √                                                                   | ∕<br>∕<br>✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                                                                  | ✓            |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta<br>Injection System VMZ with a                                                                                                                                                                                                                                                                                                                                                                                                 | n hammer drill bit w<br>allation in water-fill<br>anchor rod                                                                                                                    | /ith suction or H<br>ed drill hole is r<br>VMZ-IG                                                                                                                                                        | -<br>Ieller Dust<br>not allowe<br>M6                               | rer Expert<br>d)<br>M8                                                       | ✓<br>M10                                                                   | M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | √<br>M16                                                                           | √<br>M20     |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta<br>Injection System VMZ with a<br>Static and guasi-static action                                                                                                                                                                                                                                                                                                                                                               | ۱ hammer drill bit w<br>allation in water-fill<br>anchor rod                                                                                                                    | /ith suction or H<br>ed drill hole is r<br>VMZ-IG                                                                                                                                                        | -<br>Ieller Dusi<br>not allowe<br>M6                               | ver Expert<br>d)<br>M8                                                       | M10                                                                        | M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | √<br>M16                                                                           | √<br>M20     |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta<br>Injection System VMZ with a<br>Static and quasi-static action<br>Seismic action (Category C1                                                                                                                                                                                                                                                                                                                                | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)                                                                                                           | <i>r</i> ith suction or H<br>ed drill hole is r<br><b>VMZ-IG</b>                                                                                                                                         | -<br>Heller Dust<br>not allowe<br>M6                               | er Expert                                                                    | M10                                                                        | M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | √<br>M16                                                                           | √<br>M20     |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta<br>Injection System VMZ with a<br>Static and quasi-static action<br>Seismic action (Category C1<br>Cracked and uncracked conc                                                                                                                                                                                                                                                                                                  | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>rete                                                                                                   | /ith suction or H<br>ed drill hole is r<br>VMZ-IG                                                                                                                                                        | -<br>leller Dust<br>not allowe<br>M6                               | ✓<br>er Expert<br>d)<br>M8                                                   | M10                                                                        | M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | √<br>M16                                                                           | √<br>        |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta<br>Injection System VMZ with a<br>Static and quasi-static action<br>Seismic action (Category C1<br>Cracked and uncracked conc<br>Strength classes acc. to EN 2                                                                                                                                                                                                                                                                 | hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>rete<br>206-1:2013+A1:2                                                                                  | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016                                                                                                                                                 | -<br>leller Dusi<br>not allowe<br>M6                               | ver Expert<br>d)<br>M8                                                       | M10                                                                        | M12<br>/<br>/<br>o C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | √<br>M16                                                                           | √<br>M20     |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta<br>Injection System VMZ with a<br>Static and quasi-static action<br>Seismic action (Category C1<br>Cracked and uncracked conc<br>Strength classes acc. to EN 2<br>Reinforced or unreinforced no<br>acc. to EN 206-1:2013+A1:20                                                                                                                                                                                                 | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>:rete<br>206-1:2013+A1:2<br>ormal weight con<br>)16                                                    | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete                                                                                                                                        | -<br>Heller Dust<br>not allowe<br>M6                               | ✓<br>er Expert<br>d)<br>M8                                                   | M10<br>(C20/25 t                                                           | M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | √<br>M16                                                                           | ✓<br>M20     |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta<br>Injection System VMZ with a<br>Static and quasi-static action<br>Seismic action (Category C1<br>Cracked and uncracked conc<br>Strength classes acc. to EN 2<br>Reinforced or unreinforced no<br>acc. to EN 206-1:2013+A1:20<br>Temperature Range I                                                                                                                                                                          | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>:rete<br>206-1:2013+A1:2<br>ormal weight con<br>016<br>-40 °                                           | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete<br>C to +80 °C                                                                                                                         | -<br>Heller Dust<br>not allowe<br><b>M6</b><br>m<br>m              | er Expert<br>d)<br>M8<br>ax. short<br>ax. long t                             | M10<br>C20/25 t                                                            | M12<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ✓<br>M16<br>-80 °C<br>50 °C                                                        | √<br>M20     |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta<br>Injection System VMZ with a<br>Static and quasi-static action<br>Seismic action (Category C1<br>Cracked and uncracked cond<br>Strength classes acc. to EN 2<br>Reinforced or unreinforced nd<br>acc. to EN 206-1:2013+A1:20<br>Temperature Range I<br>Temperature Range II                                                                                                                                                  | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>rrete<br>206-1:2013+A1:2<br>ormal weight con<br>016<br>-40 °C                                          | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete<br>C to +80 °C<br>; to +120 °C                                                                                                         | -<br>Heller Dust<br>M6<br>M6                                       | er Expert<br>d)<br>M8<br>ax. short<br>ax. long t<br>ax. short<br>ax. long t  | M10<br>C20/25 t<br>term temp<br>erm temp<br>term temp                      | M12<br>M12<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓<br>M16<br>-80 °C<br>50 °C<br>-120 °C<br>72 °C                                    | ✓            |
| Overhead installation<br>Pre-setting installation<br>Trough-setting installation<br>e.g. MKT vacuum drill bit, Würth<br>Exception: VMZ-A 75 M12 (Insta<br>Injection System VMZ with a<br>Static and quasi-static action<br>Seismic action (Category C1<br>Cracked and uncracked conc<br>Strength classes acc. to EN 2<br>Reinforced or unreinforced no<br>acc. to EN 206-1:2013+A1:20<br>Temperature Range I                                                                                                                                                                          | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>:rete<br>206-1:2013+A1:2<br>ormal weight con<br>016<br>-40 °C<br>-40 °C<br>Han                         | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete<br>C to +80 °C<br>C to +120 °C<br>nmer drill bit                                                                                       | -<br>Heller Dust<br>mot allower<br>M6                              | er Expert<br>d)<br>M8<br>ax. short<br>ax. long t<br>ax. long t               | M10<br>C20/25 t<br>term temp<br>term temp<br>term temp                     | M12<br>M12<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓<br>M16<br>-80 °C<br>50 °C<br>-120 °C<br>72 °C                                    | ✓            |
| Overhead installation Pre-setting installation Trough-setting installation e.g. MKT vacuum drill bit, Würth Exception: VMZ-A 75 M12 (Insta Injection System VMZ with a Static and quasi-static action Seismic action (Category C1 Cracked and uncracked conc Strength classes acc. to EN 2 Reinforced or unreinforced nd acc. to EN 206-1:2013+A1:20 Temperature Range I Temperature Range I Making of drill hole                                                                                                                                                                     | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>rete<br>206-1:2013+A1:2<br>ormal weight con<br>016<br>-40 °C<br>Han<br>Vacu                            | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete<br>C to +80 °C<br>C to +120 °C<br>hmer drill bit<br>um drill bit <sup>1</sup>                                                          | -<br>Heller Dust<br>not allowe<br><b>M6</b><br>m<br>m<br>m         | er Expert<br>d)<br>M8<br>ax. short<br>ax. long t<br>ax. long t<br>ax. long t | M10<br>C20/25 t<br>term temp<br>term temp<br>term temp<br>term temp        | M12<br>M12<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓<br>M16<br>-80 °C<br>50 °C<br>-120 °C<br>72 °C<br>✓                               | √<br>M20     |
| Overhead installation Pre-setting installation Trough-setting installation e.g. MKT vacuum drill bit, Würth Exception: VMZ-A 75 M12 (Insta Injection System VMZ with a Static and quasi-static action Seismic action (Category C1 Cracked and uncracked conc Strength classes acc. to EN 2 Reinforced or unreinforced no acc. to EN 206-1:2013+A1:20 Temperature Range I Temperature Range I Making of drill hole                                                                                                                                                                     | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>rrete<br>206-1:2013+A1:2<br>ormal weight con<br>016<br>-40 °C<br>-40 °C<br>Han<br>Vacu<br>Dian         | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete<br>C to +80 °C<br>C to +120 °C<br>to +120 °C<br>nmer drill bit<br>um drill bit<br>nond drill bit                                       | -<br>Heller Dust<br>not allowe<br>M6<br>m<br>m<br>m<br>m<br>m      | x. short<br>ax. short<br>ax. long t<br>ax. long t<br>x. long t               | M10<br>M10<br>C20/25 t<br>term temp<br>term temp<br>term temp<br>v         | M12<br>M12<br>M12<br>Coerature +<br>coerature +<br>coe    | ✓<br>M16<br>-80 °C<br>50 °C<br>-120 °C<br>72 °C<br>✓<br>✓                          | ✓<br>M20     |
| Overhead installation Pre-setting installation Trough-setting installation e.g. MKT vacuum drill bit, Würth Exception: VMZ-A 75 M12 (Insta Injection System VMZ with a Static and quasi-static action Seismic action (Category C1 Cracked and uncracked conc Strength classes acc. to EN 2 Reinforced or unreinforced nd acc. to EN 206-1:2013+A1:20 Temperature Range I Temperature Range I Making of drill hole                                                                                                                                                                     | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>crete<br>206-1:2013+A1:2<br>ormal weight con<br>016<br>-40 °C<br>-40 °C<br>Han<br>Vacu<br>Dian         | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete<br>C to +80 °C<br>C to +120 °C<br>hmer drill bit<br>um drill bit <sup>1)</sup><br>nond drill bit<br>dry concrete                       | -<br>Heller Dust<br>M6<br>M6                                       | Ax. short<br>ax. short<br>ax. short<br>ax. long t<br>ax. long t<br>v         | M10<br>M10<br>C20/25 t<br>term temp<br>term temp<br>term temp<br>v         | M12<br>M12<br>M12<br>M12<br>C<br>o C50/60<br>C<br>coerature +<br>erature +<br>coerature | ✓<br>M16<br>-80 °C<br>50 °C<br>-120 °C<br>72 °C<br>✓<br>✓                          | ✓<br>M20     |
| Overhead installation Pre-setting installation Trough-setting installation e.g. MKT vacuum drill bit, Würth Exception: VMZ-A 75 M12 (Insta Injection System VMZ with a Static and quasi-static action Seismic action (Category C1 Cracked and uncracked conc Strength classes acc. to EN 2 Reinforced or unreinforced nd acc. to EN 206-1:2013+A1:20 Temperature Range I Temperature Range II Making of drill hole Installation allowable in                                                                                                                                          | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>crete<br>206-1:2013+A1:2<br>ormal weight con<br>016<br>-40 °C<br>-40 °C<br>Han<br>Vacu<br>Dian         | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete<br>C to +80 °C<br>C to +120 °C<br>hmer drill bit<br>um drill bit<br>1000 drill bit<br>1100 drill bit<br>1100 drill bit                 | -<br>Heller Dust<br>M6<br>M6<br>m<br>m<br>m                        | x. short<br>ax. short<br>ax. long t<br>ax. long t<br>x. long t               | M10<br>M10<br>C20/25 t<br>term temp<br>term temp<br>term temp<br>v         | M12<br>M12<br>/<br>o C50/60<br>/<br>berature +<br>erature +<br>erature +<br>/<br>oerature +<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ✓<br>M16<br>-80 °C<br>50 °C<br>-120 °C<br>-120 °C<br>72 °C<br>✓<br>✓               | ✓<br>M20     |
| Overhead installation         Pre-setting installation         Trough-setting installation         e.g. MKT vacuum drill bit, Würth         Exception: VMZ-A 75 M12 (Installation         Injection System VMZ with a         Static and quasi-static action         Seismic action (Category C1         Cracked and uncracked conc         Strength classes acc. to EN 2         Reinforced or unreinforced no         acc. to EN 206-1:2013+A1:20         Temperature Range I         Making of drill hole         Installation         allowable in                                | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>rete<br>206-1:2013+A1:2<br>ormal weight con<br>016<br>-40 °C<br>Han<br>Vacu<br>Dian                    | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete<br>C to +80 °C<br>C to +120 °C<br>hmer drill bit<br>um drill bit<br>um drill bit<br>ium drill bit<br>it<br>y concrete<br>y-filled hole | -<br>Heller Dust<br>mot allower<br>M6<br>m<br>m<br>m<br>m<br>m     | er Expert<br>d)<br>M8<br>ax. short<br>ax. long t<br>ax. long t<br>v          | M10<br>M10<br>C20/25 t<br>term temp<br>term temp<br>term temp<br>term temp | M12<br>M12<br>/<br>o C50/60<br>/<br>perature +<br>erature +<br>erature +<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ✓<br>M16<br>M16<br>M16<br>M16<br>√<br>50 °C<br>120 °C<br>72 °C<br>✓<br>✓<br>✓<br>✓ | ✓<br>M20     |
| Overhead installation         Pre-setting installation         Trough-setting installation         e.g. MKT vacuum drill bit, Würth         Exception: VMZ-A 75 M12 (Installation         Injection System VMZ with a         Static and quasi-static action         Seismic action (Category C1         Cracked and uncracked conce         Strength classes acc. to EN 2         Reinforced or unreinforced no         acc. to EN 206-1:2013+A1:20         Temperature Range I         Making of drill hole         Installation         allowable in         Overhead installation | n hammer drill bit w<br>allation in water-fill<br>anchor rod<br>+ C2)<br>rrete<br>206-1:2013+A1:2<br>ormal weight con<br>016<br>-40 °C<br>Han<br>Vacu<br>Dian<br>0<br>v<br>wate | /ith suction or H<br>ed drill hole is r<br>VMZ-IG<br>016<br>crete<br>C to +80 °C<br>C to +120 °C<br>hmer drill bit<br>um drill bit<br>um drill bit<br>1ry concrete<br>vet concrete<br>er-filled hole     | -<br>Heller Dust<br>mot allowe<br>M6<br>m<br>m<br>m<br>m<br>m<br>m | <pre>✓ er Expert d)  M8  ax. short ax. long t ax. long t √ √ √ </pre>        | M10<br>M10<br>C20/25 t<br>term temp<br>term temp<br>term temp<br>term temp | M12<br>M12<br>/<br>o C50/60<br>/<br>perature +<br>erature +<br>/<br>perature +<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ✓<br>M16<br>-80 °C<br>50 °C<br>-120 °C<br>72 °C<br>✓<br>✓                          | ✓<br>M20     |

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all versions VMZ-A and VMZ-IG
- For all other conditions: Intended use of materials according to Annex A3, Table A1 and Annex A5, Table A4 corresponding to the corrosion resistance class CRC to EN 1993-1-4:2015

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055.

#### Installation:

- Drill hole must be cleaned directly prior to installation of the anchor or the drill hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the drill hole.
- Water filled drill holes must not be polluted otherwise the cleaning of the drill hole must be repeated.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -15 °C.
- It must be ensured that icing does not occur in the drill hole.
- Optionally, the annular gap between anchor rod and fixture may be filled with injection adhesive VMZ using the washer with bore (Part 2b, Annex A3) instead of the washer (Part 2a, Annex A3).

| Temperature<br>in the drill hole | Maximum working time | Minimum curing time<br>dry concrete <sup>1)</sup> |
|----------------------------------|----------------------|---------------------------------------------------|
| 15 °C to - 10 °C                 | 45 min               | 7 d                                               |
| - 9 °C to - 5 °C                 | 45 min               | 10:30 h                                           |
| - 4 °C to - 1 °C                 | 45 min               | 6:00 h                                            |
| 0 °C to +4 °C                    | 20 min               | 3:00 h                                            |
| +5 °C to +9 °C                   | 12 min               | 2:00 h                                            |
| -10 °C to +19 °C                 | 6 min                | 1:20 h                                            |
| -20 °C to +29 °C                 | 4 min                | 45 min                                            |
| -30 °C to +34 °C                 | 2 min                | 25 min                                            |
| -35 °C to +39 °C                 | 1,4 min              | 20 min                                            |
| + 40 °C                          | 1,4 min              | 15 min                                            |

<sup>1)</sup> Curing time in wet concrete shall be doubled.

## Table B2: Working and curing time VMZ express

| Temperature in the drill hole | Maximum working time | Minimum curing time<br>dry concrete <sup>1)</sup> |
|-------------------------------|----------------------|---------------------------------------------------|
| - 5 °C to - 1 °C              | 20 min               | 4:00 h                                            |
| 0 °C to +4 °C                 | 10 min               | 2:00 h                                            |
| + 5 °C to + 9 °C              | 6 min                | 1:00 h                                            |
| +10 °C to +19 °C              | 3 min                | 40 min                                            |
| +20 °C to +29 °C              | 1 min                | 20 min                                            |
| + 30 °C                       | 1 min                | 10 min                                            |
| Cartridge temperature         | ≥ 5°                 | C                                                 |

<sup>1)</sup> Curing time in wet concrete shall be doubled.

ANNEX B4 Intended Use / VMZ-A / Installation parameters

| Table B3: Installation para            | meters                          | s, VMZ  | -A M8    | – M12    |                                       |           |                          |           |                                 |            |            |            |             |
|----------------------------------------|---------------------------------|---------|----------|----------|---------------------------------------|-----------|--------------------------|-----------|---------------------------------|------------|------------|------------|-------------|
| Anchor size                            | VM                              | IZ-A    | 40<br>M8 | 50<br>M8 | 60<br>M10                             | 75<br>M10 | 75<br>M12                | 70<br>M12 | 80<br>M12                       | 95<br>M12  | 100<br>M12 | 110<br>M12 | 125<br>M12  |
| Effective anchorage depth              | h <sub>ef</sub> ≥               | [mm]    | 40       | 50       | 60                                    | 75        | 75                       | 70        | 80                              | 95         | 100        | 110        | 125         |
| Nominal diameter of drill hole         | d <sub>0</sub> =                | [mm]    | 10       | 10       | 12                                    | 12        | 12                       | 14        | 14                              | 14         | 14         | 14         | 14          |
| Depth of drill hole                    | $h_0 \geq$                      | [mm]    | 42       | 55       | 65                                    | 80        | 80                       | 75        | 85                              | 100        | 105        | 115        | 130         |
| Diameter of cleaning brush             | D≥                              | [mm]    | 10.8     | 10.8     | 13.0                                  | 13.0      | 13.0                     | 15.0      | 15.0                            | 15.0       | 15.0       | 15.0       | 15.0        |
| Installation torque                    | $T_{inst} \leq$                 | [Nm]    | 10       | 10       | 15                                    | 15        | 25                       | 25        | 25                              | 25         | 30         | 30         | 30          |
| Diameter of clearance hole             | in the                          | fixture | -        | ÷        |                                       | ÷         | -                        | -         | ÷                               | -          | ÷          | ÷          | -           |
| Pre-setting installation               | $d_{\rm f} \leq$                | [mm]    | 9        | 9        | 12                                    | 12        | 14                       | 14        | 14                              | 14         | 14         | 14         | 14          |
| Through-setting<br>installation        | d <sub>f</sub> ≤                | [mm]    | -        | -        | 14                                    | 14        | 14 <sup>1)</sup> /<br>16 | 16        | 16                              | 16         | 16         | 16         | 16          |
| <sup>I)</sup> see Annex B11            |                                 |         |          |          |                                       |           |                          |           |                                 |            |            |            |             |
| Table B4: Installation para            | meters                          | s, VMZ  | -A M16   | 6 – M24  | 1                                     |           |                          |           |                                 |            |            |            |             |
| nchor size VMZ-A                       |                                 |         | 90 105   |          | 125                                   | 145       | 160                      | 115       | 170                             | 190        | 170        | 200        | 225         |
| Anchor size                            | VIV                             | Z-A     | M16      | M16      | M16                                   | M16       | M16                      | M20       | (LG)                            | (LG)       | (LG)       | (LG)       | M24<br>(LG) |
| Effective anchorage depth              | h <sub>ef</sub> ≥               | [mm]    | 90       | 105      | 125                                   | 145       | 160                      | 115       | 170                             | 190        | 170        | 200        | 225         |
| Nominal diameter of drill hole         | <b>d</b> <sub>0</sub> =         | [mm]    | 18       | 18       | 18                                    | 18        | 18                       | 22        | 24                              | 24         | 26         | 26         | 26          |
| Depth of drill hole                    | $h_0 \geq$                      | [mm]    | 98       | 113      | 133                                   | 153       | 168                      | 120       | 180                             | 200        | 185        | 215        | 240         |
| Diameter of cleaning brush             | D≥                              | [mm]    | 19.0     | 19.0     | 19.0                                  | 19.0      | 19.0                     | 23.0      | 25.0                            | 25.0       | 27.0       | 27.0       | 27.0        |
| Installation torque                    | $T_{inst} \leq$                 | [Nm]    | 50       | 50       | 50                                    | 50        | 50                       | 80        | 80                              | 80         | 100        | 120        | 120         |
| Diameter of clearance hole             | in the                          | fixture | -        | -        | -                                     | -         |                          | -         |                                 | _          |            |            |             |
| Pre-setting installation               | $d_{\rm f} \leq$                | [mm]    | 18       | 18       | 18                                    | 18        | 18                       | 22        | 24<br>(22)                      | 24<br>(22) | 26         | 26         | 26          |
| Through-setting installation           | $d_{f} \leq$                    | [mm]    | 20       | 20       | 20                                    | 20        | 20                       | 24        | 26                              | 26         | 28         | 28         | 28          |
| Pre-set                                | ting in                         | stallat | ion      |          |                                       |           |                          | Th        | rough                           | -settin    | g insta    | llation    |             |
| size<br>M8 to M16,<br>M20 I G. M24 I G | size<br>M20 + M24<br>≥ 0,5 tfix |         |          |          | size<br>M10 to M16,<br>M20 LG, M24 LG |           |                          |           | size<br>M20 + M24<br>≥ 0,5 trix |            |            |            |             |
|                                        |                                 |         |          |          | -                                     |           |                          |           |                                 | ł          |            |            |             |

≥ļ

Ť

tfix

h<sub>ef</sub>

h<sub>0</sub>

h

ð

tfix

The annular gap in the clearance hole in the fixture has to be filled completely by excess mortar!

Σ

tfix\_

ð

tfix

ANNEX B5 Intended Use / VMZ-A / Minimum spacing and edge distance

| Anchor size                      | VM               | Z-A  | 40<br>M8 | 50<br>M8 | 60<br>M10 | 75<br>M10                | 75<br>M12 | 70<br>M12 | 80<br>M12 | 95<br>M12                | 100<br>M12       | 110<br>M12       | 125<br>M12       |
|----------------------------------|------------------|------|----------|----------|-----------|--------------------------|-----------|-----------|-----------|--------------------------|------------------|------------------|------------------|
| Minimum thickness of<br>concrete | h <sub>min</sub> | [mm] | 80       | 80       | 100       | 110<br>100 <sup>1)</sup> | 110       | 110       | 110       | 130<br>125 <sup>1)</sup> | 130              | 140              | 160              |
| Cracked concrete                 |                  |      |          |          |           |                          |           |           |           |                          |                  |                  |                  |
| Minimum spacing                  | Smin             | [mm] | 40       | 40       | 40        | 40                       | 50        | 55        | 40        | 40                       | 50               | 50               | 50               |
| Minimum edge distance            | Cmin             | [mm] | 40       | 40       | 40        | 40                       | 50        | 55        | 50        | 50                       | 50               | 50               | 50               |
| Uncracked concrete               |                  |      |          |          |           |                          |           |           |           |                          |                  |                  |                  |
| Minimum spacing                  | Smin             | [mm] | 40       | 40       | 50        | 50                       | 50        | 55        | 55        | 55                       | 80 <sup>2)</sup> | 80 <sup>2)</sup> | 80 <sup>2)</sup> |
| Minimum edge distance            | Cmin             | [mm] | 40       | 40       | 50        | 50                       | 50        | 55        | 55        | 55                       | 55 <sup>2)</sup> | 55 <sup>2)</sup> | 55 <sup>2)</sup> |

#### Table B6: Minimum spacing and edge distance, VMZ-A M16 – M24

| Anchor size                   | VM               | Z-A  | 90<br>M16 | 105<br>M16 | 125<br>M16               | 145<br>M16               | 160<br>M16               | 115<br>M20 | 170<br>M20<br>(LG)       | 190<br>M20<br>(LG)       | 170<br>M24<br>(LG)       | 200<br>M24<br>(LG)       | 225<br>M24<br>(LG)       |
|-------------------------------|------------------|------|-----------|------------|--------------------------|--------------------------|--------------------------|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Minimum thickness of concrete | h <sub>min</sub> | [mm] | 130       | 150        | 170<br>160 <sup>1)</sup> | 190<br>180 <sup>1)</sup> | 205<br>200 <sup>1)</sup> | 160        | 230<br>220 <sup>1)</sup> | 250<br>240 <sup>1)</sup> | 230<br>220 <sup>1)</sup> | 270<br>260 <sup>1)</sup> | 300<br>290 <sup>1)</sup> |
| Cracked concrete              |                  |      |           |            |                          |                          |                          |            |                          |                          |                          |                          |                          |
| Minimum spacing               | Smin             | [mm] | 50        | 50         | 60                       | 60                       | 60                       | 80         | 80                       | 80                       | 80                       | 80                       | 80                       |
| Minimum edge distance         | Cmin             | [mm] | 50        | 50         | 60                       | 60                       | 60                       | 80         | 80                       | 80                       | 80                       | 80                       | 80                       |
| Uncracked concrete            |                  |      |           |            |                          |                          |                          |            |                          |                          |                          |                          |                          |
| Minimum spacing               | Smin             | [mm] | 50        | 60         | 60                       | 60                       | 60                       | 80         | 80                       | 80                       | 80                       | 105                      | 105                      |
| Minimum edge distance         | Cmin             | [mm] | 50        | 60         | 60                       | 60                       | 60                       | 80         | 80                       | 80                       | 80                       | 105                      | 105                      |

<sup>1)</sup> The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.

 $^{2)}$  For an edge distance c  $\geq$  80 mm a minimum spacing  $s_{\text{min}}$  = 55 mm is applicable.

ANNEX B6 Intended Use / VMZ-IG / Installation parameters

| Anchor sizo                               | M                   |        | 40   | 50   | 60   | 75   | 70   | 80   | 90   | 105  | 125                      | 115  | 170                      | 170                      |
|-------------------------------------------|---------------------|--------|------|------|------|------|------|------|------|------|--------------------------|------|--------------------------|--------------------------|
| Anchor size                               | VI                  | VIZ-IG | M6   | M6   | M8   | M8   | M10  | M10  | M12  | M12  | M12                      | M16  | M16                      | M20                      |
| Effective anchorage<br>depth              | h <sub>ef</sub>     | [mm]   | 40   | 50   | 60   | 75   | 70   | 80   | 90   | 105  | 125                      | 115  | 170                      | 170                      |
| Nominal diameter of drill hole            | d₀                  | [mm]   | 10   | 10   | 12   | 12   | 14   | 14   | 18   | 18   | 18                       | 22   | 24                       | 26                       |
| Depth of drill hole                       | $h_0 \geq$          | [mm]   | 42   | 55   | 65   | 80   | 80   | 85   | 98   | 113  | 133                      | 120  | 180                      | 185                      |
| Diameter of cleaning brush                | D≥                  | [mm]   | 10.8 | 10.8 | 13.0 | 13.0 | 15.0 | 15.0 | 19.0 | 19.0 | 19.0                     | 23.0 | 25.0                     | 27.0                     |
| Installation torque                       | T <sub>inst</sub> ≤ | [Nm]   | 8    | 8    | 10   | 10   | 15   | 15   | 25   | 25   | 25                       | 50   | 50                       | 80                       |
| Diameter of clearance hole in the fixture | $d_{\rm f}$ $\leq$  | [mm]   | 7    | 7    | 9    | 9    | 12   | 12   | 14   | 14   | 14                       | 18   | 18                       | 22                       |
| Available thread length                   | L <sub>th</sub>     | [mm]   | 12   | 15   | 16   | 19   | 20   | 23   | 24   | 27   | 30                       | 32   | 32                       | 40                       |
| Minimum screw-in<br>depth                 | $L_{sdmin}$         | [mm]   | 7    | 7    | 9    | 9    | 12   | 12   | 14   | 14   | 14                       | 18   | 18                       | 22                       |
| Minimum thickness of concrete             | h <sub>min</sub>    | [mm]   | 80   | 80   | 100  | 110  | 110  | 110  | 130  | 150  | 170<br>160 <sup>1)</sup> | 160  | 230<br>220 <sup>1)</sup> | 230<br>220 <sup>1)</sup> |
| Cracked concrete                          |                     | T      |      | I    | ľ    | 1    | 1    | 1    | 1    |      |                          |      | Π                        |                          |
| Minimum spacing                           | Smin                | [mm]   | 40   | 40   | 40   | 40   | 55   | 40   | 50   | 50   | 60                       | 80   | 80                       | 80                       |
| Minimum edge<br>distance                  | Cmin                | [mm]   | 40   | 40   | 40   | 40   | 55   | 50   | 50   | 50   | 60                       | 80   | 80                       | 80                       |
| Uncracked concrete                        |                     |        |      |      |      | 1    |      |      |      | 1    |                          |      |                          |                          |
| Minimum spacing                           | Smin                | [mm]   | 40   | 40   | 50   | 50   | 55   | 55   | 50   | 60   | 60                       | 80   | 80                       | 80                       |
| Minimum edge<br>distance                  | Cmin                | [mm]   | 40   | 40   | 50   | 50   | 55   | 55   | 50   | 60   | 60                       | 80   | 80                       | 80                       |

<sup>1)</sup> The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.



| Har | nmer drill bit         |                                                                                                                                                                                                                                                                                                              |
|-----|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                        |                                                                                                                                                                                                                                                                                                              |
| 1   |                        | Use hammer drill or compressed air drill with drill bit and depth gauge. Drill perpendicular to concrete surface.                                                                                                                                                                                            |
| Cle | aning                  |                                                                                                                                                                                                                                                                                                              |
|     | Cleaning with compre   | ssed air (all sizes)                                                                                                                                                                                                                                                                                         |
| 2a  | min. 6 bar<br>2x       | Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.                                                                                                                                    |
| 3a  |                        | Check diameter of cleaning brush. If the brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. Turn on drill machine and brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine. |
| 4a  | min. 6 bar<br>2x       | Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.                                                                                                                                    |
|     | Manual cleaning (alter | natively, up to drill hole diameter 18mm)                                                                                                                                                                                                                                                                    |
| 2b  |                        | Blow out drill hole from the bottom with Blow-out pump at least two times.                                                                                                                                                                                                                                   |
| 3b  |                        | Check diameter of cleaning brush. If the brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. Turn on drill machine and brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine. |
| 4b  |                        | Blow out drill hole from the bottom with Blow-out pump at least two times.                                                                                                                                                                                                                                   |

| Insta | allation instructions - Vacuu | m drill bit                                                                                                                                                                                                                                                                                                                                             |
|-------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Va    | cuum drill bit                |                                                                                                                                                                                                                                                                                                                                                         |
| Но    | le drilling and cleaning      |                                                                                                                                                                                                                                                                                                                                                         |
| 1     |                               | Drill hole perpendicular to concrete surface by using a vacuum drill bit (see<br>Annex B1). The nominal underpressure of the vacuum cleaner must be at least<br>230 mbar / 23kPa.<br><b>Pay attention to the function of the dust extraction system!</b><br>Make sure the dust extraction is working properly throughout the whole drilling<br>process. |
| Ad    | ditional cleaning is not nece | essary - continue with step 5!                                                                                                                                                                                                                                                                                                                          |
| nsta  | allation instructions - Diamo | nd drilling                                                                                                                                                                                                                                                                                                                                             |
| Dia   | amond drilling                |                                                                                                                                                                                                                                                                                                                                                         |
| Но    | le drilling                   |                                                                                                                                                                                                                                                                                                                                                         |
| 1     |                               | Use diamond drill with diamond drill bit and depth gauge.<br>Drill perpendicular to concrete surface.                                                                                                                                                                                                                                                   |
| Cle   | eaning                        |                                                                                                                                                                                                                                                                                                                                                         |
| 2     | $\rightarrow$                 | Remove drill core at least up to the nominal hole depth and check drill hole depth.                                                                                                                                                                                                                                                                     |
| 3     |                               | Flushing of drill hole:<br>Flush drill hole with water, starting from the bottom, until clear water gets out of<br>the drill hole.                                                                                                                                                                                                                      |
| 4     | min. 6 bar                    | Connect Air Blower to compressed air (min. 6 bar, oil-free).<br>Open air valve and blow out drill hole along the entire depth with back and forth<br>motion at least two times.                                                                                                                                                                         |
|       |                               |                                                                                                                                                                                                                                                                                                                                                         |

ANNEX B9 Intended Use / Injection (continuation)





ANNEX B11 Intended Use / VMZ-A 75 M12 / Through-setting installation with clearance between concrete and anchor plate



#### ANNEX B12 Intended Use / VMZ-IG / Anchor installation (continuation)



#### ANNEX C1 Performance / Characteristics values for concrete failure and splitting

| Anchor size                                                                                                                                                                                                       |                                                                       | VMZ-A<br>VMZ-IG                                                                        |                              | all sizes                                                                                                                                                                         |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Concrete cone                                                                                                                                                                                                     | e failure                                                             |                                                                                        |                              |                                                                                                                                                                                   |  |  |  |  |  |  |
| Eactor for k                                                                                                                                                                                                      | uncracked concrete                                                    | <b>k</b> ucr,N                                                                         | [-]                          | 11.0                                                                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                                   | cracked concrete                                                      | k <sub>cr,N</sub>                                                                      | [-]                          | 7.7                                                                                                                                                                               |  |  |  |  |  |  |
| Characteristic                                                                                                                                                                                                    | edge distance                                                         | Ccr,N                                                                                  | [mm]                         | 1.5 ∙ h <sub>ef</sub>                                                                                                                                                             |  |  |  |  |  |  |
| Characteristic                                                                                                                                                                                                    | spacing                                                               | Scr,N                                                                                  | [mm]                         | 2 · C <sub>cr,N</sub>                                                                                                                                                             |  |  |  |  |  |  |
| For each proof of splitting failure, $N_{Rk,sp}$ shall be calculated according to EN 1992-4:2018, equation (7.23). The higher value for $N_{Rk,sp}$ of case 1 and case 2 may be applied for the design.<br>Case 1 |                                                                       |                                                                                        |                              |                                                                                                                                                                                   |  |  |  |  |  |  |
| Case 1                                                                                                                                                                                                            |                                                                       | case 2 m                                                                               | ay be a                      | applied for the design.                                                                                                                                                           |  |  |  |  |  |  |
| Case 1<br>Characteristic                                                                                                                                                                                          | resistance                                                            | case ∠ m<br>N <sup>0</sup> <sub>Rk,sp</sub>                                            | lay be a                     | applied for the design.<br>see following tables                                                                                                                                   |  |  |  |  |  |  |
| Case 1<br>Characteristic<br>Characteristic                                                                                                                                                                        | resistance<br>edge distance                                           | Case 2 m<br>N <sup>0</sup> <sub>Rk,sp</sub><br>C <sub>cr,sp</sub>                      | [kN]<br>[mm]                 | see following tables<br>1.5 • h <sub>ef</sub>                                                                                                                                     |  |  |  |  |  |  |
| Case 1<br>Characteristic<br>Characteristic<br>Characteristic                                                                                                                                                      | resistance<br>edge distance<br>spacing                                | Case 2 m<br>N <sup>0</sup> <sub>Rk,sp</sub><br>C <sub>cr,sp</sub>                      | [kN]<br>[mm]<br>[mm]         | see following tables<br>1.5 • h <sub>ef</sub><br>2 • c <sub>cr,sp</sub>                                                                                                           |  |  |  |  |  |  |
| Case 1<br>Characteristic<br>Characteristic<br>Characteristic<br>Case 2                                                                                                                                            | resistance<br>edge distance<br>spacing                                | N <sup>0</sup> Rk,sp<br>Ccr,sp<br>Scr,sp                                               | [kN]<br>[mm]<br>[mm]         | applied for the design.<br>see following tables<br>$1.5 \cdot h_{ef}$<br>$2 \cdot c_{cr,sp}$                                                                                      |  |  |  |  |  |  |
| Case 1<br>Characteristic<br>Characteristic<br>Characteristic<br>Case 2<br>Characteristic                                                                                                                          | resistance<br>edge distance<br>spacing<br>resistance                  | N <sup>0</sup> Rk,sp<br>Ccr,sp<br>Scr,sp                                               | [kN]<br>[mm]<br>[kN]         | applied for the design.<br>see following tables<br>1.5 • h <sub>ef</sub><br>2 • c <sub>cr,sp</sub><br>min [N <sub>Rk,p</sub> ; N <sup>0</sup> <sub>Rk,c</sub> ]                   |  |  |  |  |  |  |
| Case 1<br>Characteristic<br>Characteristic<br>Characteristic<br>Case 2<br>Characteristic<br>Characteristic                                                                                                        | resistance<br>spacing<br>resistance<br>edge distance<br>edge distance | Case 2 m<br>N <sup>0</sup> Rk,sp<br>Ccr,sp<br>Scr,sp<br>N <sup>0</sup> Rk,sp<br>Ccr,sp | [kN]<br>[mm]<br>[kN]<br>[kN] | applied for the design.<br>see following tables<br>$1.5 \cdot h_{ef}$<br>$2 \cdot c_{cr,sp}$<br>min [N <sub>Rk,p</sub> ; N <sup>0</sup> <sub>Rk,c</sub> ]<br>see following tables |  |  |  |  |  |  |

ANNEX C2 Performance / VMZ-A M8-M12 / Characteristic values for tension loads

| Anchor size                                                                                                        | v                       | MZ-A       | 40<br>M8         | 50<br>M8           | 60<br>M10          | 75<br>M10          | 75<br>M12          | 70<br>M12                              | 80<br>M12          | 95<br>M12          | 100<br>M12        | 110<br>M12        | 125<br>M12 |
|--------------------------------------------------------------------------------------------------------------------|-------------------------|------------|------------------|--------------------|--------------------|--------------------|--------------------|----------------------------------------|--------------------|--------------------|-------------------|-------------------|------------|
| Installation factor                                                                                                | γinst                   | [-]        |                  |                    |                    |                    |                    | 1.0                                    |                    |                    |                   |                   |            |
| Steel failure                                                                                                      |                         |            |                  |                    |                    |                    | -                  |                                        | _                  |                    |                   |                   |            |
| Characteristic resistance                                                                                          | N <sub>Rk,s</sub>       | [kN]       | 15               | 18                 | 2                  | 5                  | 35                 | 49                                     | 5                  | 64                 |                   | 57                |            |
| Partial factor                                                                                                     | γMs                     | [-]        |                  |                    |                    |                    |                    | 1.5                                    |                    |                    |                   |                   |            |
| Pull-out                                                                                                           |                         |            |                  |                    |                    |                    |                    |                                        |                    |                    |                   |                   |            |
| Characteristic resistance (con                                                                                     | crete C2                | 0/25)      |                  |                    |                    |                    |                    |                                        |                    |                    |                   |                   |            |
| uncracked 50°C / 80°C <sup>1</sup>                                                                                 | Noka                    | [kN]       | 9                | 17.4               | 22.9               | 32                 | 32                 | 28.8                                   | 35.2               | 40                 | 49.2              | 50                | 50         |
| concrete 72°C / 120°C <sup>1</sup>                                                                                 | тякк,р                  | [kN]       | 6                | 9                  | 16                 | 16                 | 16                 | 16                                     | 25                 | 25                 | 30                | 30                | 30         |
| cracked 50°C / 80°C <sup>1</sup>                                                                                   | NRk,p                   | [kN]       | 8.7              | 12.2               | 16                 | 22.4               | 22.4               | 20.2                                   | 24.6               | 31.9               | 34.4              | 39.7              | 48.1       |
| concrete 72°C / 120°C <sup>1</sup>                                                                                 | ) ''                    | [kN]       | 5                | 7.5                | 12                 | 12                 | 12                 | 16                                     | 20                 | 20                 | 30                | 30                | 30         |
| Splitting                                                                                                          |                         |            |                  | 1                  |                    |                    |                    |                                        |                    |                    |                   |                   |            |
| Splitting for standard thicknes                                                                                    | s of cor                | ncrete     | memi             | oer                | r                  |                    | 1                  |                                        |                    | r                  |                   |                   | 1          |
| Standard thickness of concrete                                                                                     | $h_{\text{min},1} \geq$ | [mm]       | 1                | 00                 | 120                | 150                | 150                | 140                                    | 160                | 190                | 200               | 220               | 250        |
| Case 1                                                                                                             |                         |            |                  |                    |                    |                    |                    |                                        |                    |                    |                   |                   |            |
| Characteristic resistance (concrete C20/25)                                                                        | $N^0_{Rk,sp}$           | [kN]       | 7.5              | 9                  | 16                 | 20                 | 2                  | 0                                      | 35.2               | 30                 |                   | 40                |            |
| Case 2                                                                                                             |                         |            |                  |                    |                    |                    |                    |                                        |                    |                    |                   |                   |            |
| Characteristic edge distance                                                                                       | Ccr,sp                  | [mm]       | 3                | h <sub>ef</sub>    | 2.5h <sub>ef</sub> | 3.5h <sub>ef</sub> | 3.5h <sub>ef</sub> | 2.5h <sub>ef</sub>                     | 1.5h <sub>ef</sub> | 2.5h <sub>ef</sub> | 2 h <sub>ef</sub> | 3 h <sub>ef</sub> | 2.5h       |
| Splitting for minimum thickne                                                                                      | ss of co                | oncrete    | mem              | ber                |                    |                    |                    |                                        |                    |                    |                   |                   |            |
| Minimum thickness of<br>concrete                                                                                   | $h_{\text{min},2} \geq$ | [mm]       | 8                | 30                 | 10                 | 00                 |                    | 110                                    |                    | 125                | 130               | 140               | 160        |
| Case 1                                                                                                             |                         |            |                  |                    |                    |                    |                    |                                        |                    |                    |                   |                   |            |
| Characteristic resistance<br>(concrete C20/25)                                                                     | $N^0_{Rk,sp}$           | [kN]       | 7.5              | 2)                 | 1                  | 6                  | 16                 | 20                                     | 25                 | 25                 |                   | 30                |            |
| Case 2                                                                                                             |                         |            |                  |                    |                    |                    |                    |                                        |                    |                    |                   |                   |            |
| Characteristic edge distance                                                                                       | Ccr,sp                  | [mm]       | 3h <sub>ef</sub> | 3.5h <sub>ef</sub> | 3 h <sub>ef</sub>  | 3.5h <sub>ef</sub> | 3.5                | Sh <sub>ef</sub>                       | 3h <sub>ef</sub>   | 3.5h <sub>ef</sub> |                   | 3h <sub>ef</sub>  |            |
| Increasing factor for<br>N <sub>Rk,p</sub> and N <sup>0</sup> <sub>Rk,sp</sub> (Case 1)                            | Ψο                      | [-]        |                  |                    |                    |                    | (                  | $\left(\frac{f_{ck}}{20}\right)^{0.5}$ | 5                  |                    |                   |                   |            |
| Concrete cone failure                                                                                              |                         |            |                  |                    |                    |                    |                    |                                        |                    |                    |                   |                   |            |
| Effective anchorage depth                                                                                          | h <sub>ef</sub>         | [mm]       | 40               | 50                 | 60                 | 75                 | 75                 | 70                                     | 80                 | 95                 | 100               | 110               | 125        |
| <ol> <li><sup>1)</sup> Maximum long-term temperature / I</li> <li><sup>2)</sup> No performance assessed</li> </ol> | /laximum s              | short-terr | n tempe          | erature            |                    |                    |                    |                                        |                    |                    |                   |                   |            |

ANNEX C3 Performance / VMZ-A M16-M24 / Characteristic values for tension loads

| Table C3: Characteristic v                                                           | alues fo                | or tens  | ion loa   | ads, VI          | MZ-A I            | <u> 16 – 1</u> | M24, s     | tatic a                                | nd qua             | si-stat            | tic acti           | on                 |                     |
|--------------------------------------------------------------------------------------|-------------------------|----------|-----------|------------------|-------------------|----------------|------------|----------------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------|
| Anchor size                                                                          | v                       | MZ-A     | 90<br>M16 | 105<br>M16       | 125<br>M16        | 145<br>M16     | 160<br>M16 | 115<br>M20                             | 170<br>M20<br>(LG) | 190<br>M20<br>(LG) | 170<br>M24<br>(LG) | 200<br>M24<br>(LG) | 225<br>M24<br>(LG)  |
| Installation factor                                                                  | γinst                   | [-]      |           |                  |                   |                |            | 1.0                                    |                    |                    |                    |                    |                     |
| Steel failure                                                                        |                         | -        |           |                  |                   |                |            |                                        |                    |                    |                    |                    |                     |
| Characteristic Steel, zin                                                            | c plated                | [kN]     | 88        | 95               | 1                 | 11             | 97         | 96                                     | 18                 | 38                 |                    | 222                |                     |
| resistance N <sub>Rk,s</sub> A                                                       | 4, HCR                  | [kN]     | 88        | 95               | 1                 | 11             | 97         | 114                                    | 10                 | 65                 |                    | 194                |                     |
| Partial factor                                                                       | γMs                     | [-]      |           |                  | 1.5               |                |            | 1.68                                   | 1                  | .5                 |                    | 1.5                |                     |
| Pull-out                                                                             | -                       | -        |           |                  |                   |                |            |                                        | -                  |                    | -                  |                    |                     |
| Characteristic resistance (                                                          | concrete                | C20/2    | 5)        |                  | -                 |                | -          | -                                      |                    |                    | -                  | -                  |                     |
| uncracked 50°C/80°C                                                                  | 1)<br>No.               | [kN]     | 42        | 52.9             | 68.8              | 75             | 90         | 60.7                                   | 109                | 128.8              | 109                | 139.1              | 166                 |
| concrete 72°C/120°C                                                                  | 1)                      | [kN]     | 25        | 35               | 5                 | 60             | 53         | 40                                     | 7                  | '5                 |                    | 95                 |                     |
| cracked 50°C/80°C                                                                    | 1)<br>Nou               | [kN]     | 29.4      | 37.1             | 48.1              | 60.1           | 69.7       | 42.5                                   | 76.3               | 90.2               | 76.3               | 97.4               | 116.2               |
| concrete 72°C/120°C                                                                  | 1)                      | [kN]     | 25        | 30               | 5                 | 50             | 51         | 30                                     | 6                  | 0                  |                    | 75                 |                     |
| Splitting                                                                            |                         |          |           |                  |                   |                |            |                                        |                    |                    |                    |                    |                     |
| Splitting for standard thicl                                                         | ness of                 | f conc   | rete      |                  |                   |                |            |                                        |                    |                    |                    |                    |                     |
| Standard thickness of<br>concrete                                                    | $h_{\text{min},1} \geq$ | [mm]     | 180       | 200              | 250               | 290            | 320        | 230                                    | 340                | 380                | 340                | 400                | 450                 |
| Case 1                                                                               |                         |          |           |                  |                   | •              |            |                                        | 1                  | •                  | a                  |                    | 1                   |
| Characteristic resistance<br>(concrete C20/25)                                       | $N^0_{Rk,sp}$           | [kN]     | 40        | 5                | 0                 | 60             | 80         | 60.7                                   | 109                | 115                | 109                | 139.1              | 140                 |
| Case 2                                                                               |                         |          |           |                  |                   |                |            |                                        |                    |                    | -                  |                    |                     |
| Characteristic<br>edge distance                                                      | Ccr,sp                  | [mm]     |           |                  | 2 h <sub>ef</sub> |                |            | 1.5                                    | h <sub>ef</sub>    | 2 h <sub>ef</sub>  | 1.5                | h <sub>ef</sub>    | 1.8 h <sub>ef</sub> |
| Splitting for minimum thic                                                           | kness o                 | f conc   | rete      |                  |                   |                |            |                                        |                    |                    |                    |                    |                     |
| Minimum thickness of<br>concrete                                                     | $h_{\text{min,2}} \geq$ | [mm]     | 130       | 150              | 160               | 180            | 200        | 160                                    | 220                | 240                | 220                | 260                | 290                 |
| Case 1                                                                               |                         |          |           |                  |                   |                |            |                                        |                    |                    | •                  |                    |                     |
| Characteristic resistance (concrete C20/25)                                          | $N^0_{Rk,sp}$           | [kN]     | 35        | 50               | 40                | 50             | 71         | 2)                                     | 7                  | '5                 | 109                | 1                  | 15                  |
| Case 2                                                                               |                         |          |           |                  |                   |                |            |                                        |                    |                    | •                  |                    |                     |
| Characteristic<br>edge distance                                                      | Ccr,sp                  | [mm]     | 2.5       | bh <sub>ef</sub> | 3h <sub>ef</sub>  | 2.5            | Shef       | 2.5h <sub>ef</sub>                     | 2.6h <sub>ef</sub> | 2.2h <sub>ef</sub> | 2.6h <sub>ef</sub> | 2.2                | 2h <sub>ef</sub>    |
| Increasing factor for $N_{Rk,p}$ and $N^{0}_{Rk,sp}$ (case 1)                        | Ψc                      | [-]      |           |                  |                   |                |            | $\left(\frac{f_{ck}}{20}\right)^{0.5}$ | 5                  |                    |                    |                    |                     |
| Concrete cone failure                                                                |                         | •        |           |                  |                   |                |            |                                        |                    |                    |                    |                    |                     |
| Effective anchorage depth                                                            | h <sub>ef</sub>         | [mm]     | 90        | 105              | 125               | 145            | 160        | 115                                    | 170                | 190                | 170                | 200                | 225                 |
| <sup>1)</sup> Maximum long-term temperature<br><sup>2)</sup> No performance assessed | / Maximu                | m short- | term terr | nperature        | e                 |                |            |                                        |                    |                    |                    |                    |                     |

ANNEX C4 Performance / / VMZ-A M8-M12 / Characteristic values for shear load

|                                           | -                          |      | 40       | 50 | 60  | 75  | 75  | 70   | 20  | 95  | 100 | 110 | 125 |
|-------------------------------------------|----------------------------|------|----------|----|-----|-----|-----|------|-----|-----|-----|-----|-----|
| Anchor size                               | VM2                        | 2-A  | 40<br>M8 | M8 | M10 | M10 | M12 | M12  | M12 | M12 | M12 | M12 | M12 |
| Installation factor                       | <b>or</b> γinst            | [-]  |          |    |     |     |     | 1.0  |     |     |     |     |     |
| Steel failure wit                         | hout lever arm             |      |          |    |     |     |     |      |     |     |     |     |     |
| Characteristic                            | Steel, zinc plated         | [kN] | 1        | 4  | 2   | 1   |     |      |     | 34  |     |     |     |
| V <sup>0</sup> <sub>Rk,s</sub>            | A4, HCR                    | [kN] | 1        | 5  | 2   | 3   |     |      |     | 34  |     |     |     |
| Partial factor                            | γMs                        | [-]  |          |    |     |     |     | 1.25 |     |     |     |     |     |
| Ductility factor                          | <b>k</b> 7                 | [-]  |          |    |     |     |     | 1.0  |     |     |     |     |     |
| Steel failure wit                         | h lever arm                |      |          |    |     |     |     |      |     |     |     |     |     |
| Characteristic                            | Steel, zinc plated         | [Nm] | 3        | 0  | 6   | 0   |     |      |     | 105 |     |     |     |
| resistance M <sup>0</sup> <sub>Rk,s</sub> | A4, HCR                    | [Nm] | 3        | 0  | 6   | 0   |     |      |     | 105 |     |     |     |
| Partial factor                            | γMs                        | [-]  |          |    |     |     |     | 1.25 | 5   |     |     |     |     |
| Concrete pry-ou                           | t failure                  |      |          |    |     |     |     |      |     |     |     |     |     |
| Pry-out factor                            | k <sub>8</sub>             | [-]  |          |    |     |     |     | 2    |     |     |     |     |     |
| Concrete edge f                           | ailure                     |      |          |    |     |     |     |      |     |     |     |     |     |
| Effective length o in shear load          | f anchor I <sub>f</sub>    | [mm] | 40       | 50 | 60  | 75  | 75  | 70   | 80  | 95  | 100 | 110 | 125 |
| Outside diameter                          | of anchor d <sub>nom</sub> | [mm] | 1        | 0  | 1   | 2   | 12  |      |     | 1   | 4   |     |     |

ANNEX C5 Performance / VMZ-A M16-M24 / Characteristic values for shear load

| Table C5: Character                     | ristic values         | for sh | near lo   | ad, VM     | IZ-A M     | 16 – M     | 24. sta    | tic or o   | uasi-s             | tatic a               | ction              |                            |                    |  |  |  |
|-----------------------------------------|-----------------------|--------|-----------|------------|------------|------------|------------|------------|--------------------|-----------------------|--------------------|----------------------------|--------------------|--|--|--|
| Anchor size                             | VM                    | Z-A    | 90<br>M16 | 105<br>M16 | 125<br>M16 | 145<br>M16 | 160<br>M16 | 115<br>M20 | 170<br>M20<br>(LG) | 190<br>M20<br>(LG)    | 170<br>M24<br>(LG) | 200<br>M24<br>(LG)         | 225<br>M24<br>(LG) |  |  |  |
| Installation factor                     | γinst                 | [-]    |           |            |            |            |            | 1,0        |                    |                       |                    |                            |                    |  |  |  |
| Steel failure without                   | ıt lever arm          | -      |           |            |            |            |            |            |                    |                       |                    |                            |                    |  |  |  |
| Characteristic                          | Steel, zinc<br>plated | [kN]   |           |            | 63         |            |            | 70         | 149<br>(9          | 9 <sup>1)</sup><br>8) |                    | 178 <sup>1)</sup><br>(141) |                    |  |  |  |
| V <sup>0</sup> <sub>Rk,s</sub>          | A4, HCR               | [kN]   |           |            | 63         |            |            | 86         | 13<br>(8           | 1 <sup>1)</sup><br>6) |                    | 156 <sup>1)</sup><br>(123) |                    |  |  |  |
| Partial factor                          | γMs                   | [-]    |           |            | 1.25       |            |            | 1.4        | 1.:                | 25                    |                    | 1.25                       |                    |  |  |  |
| Ductility factor                        | <b>k</b> 7            | [-]    |           |            |            |            |            | 1.0        |                    |                       |                    |                            |                    |  |  |  |
| Steel failure with le                   | ver arm               | n      |           |            |            |            |            |            |                    |                       |                    |                            |                    |  |  |  |
| Characteristic<br>bending resistance    | Steel, zinc<br>plated | [Nm]   |           |            | 266        |            |            | 392        | 5                  | 19                    |                    | 896                        |                    |  |  |  |
| M <sup>0</sup> <sub>Rk,s</sub>          | A4, HCR               | [Nm]   |           |            | 266        |            |            |            | 454                |                       |                    | 784                        |                    |  |  |  |
| Partial factor                          | γMs                   | [-]    |           |            | 1.25       |            |            | 1.4        | 1.:                | 25                    |                    | 1.25                       |                    |  |  |  |
| Concrete pry-out fa                     | ailure                |        |           |            |            |            |            |            |                    |                       |                    |                            |                    |  |  |  |
| Pry-out factor                          | k <sub>8</sub>        | [-]    |           |            |            |            |            | 2.0        |                    |                       |                    |                            |                    |  |  |  |
| Concrete edge failu                     | ıre                   |        |           |            |            |            |            |            |                    |                       |                    |                            |                    |  |  |  |
| Effective length of an<br>in shear load | nchor I <sub>f</sub>  | [mm]   | 90        | 105        | 125        | 145        | 160        | 115        | 170                | 190                   | 170                | 225                        |                    |  |  |  |
| Outside diameter of anchor              | d <sub>nom</sub>      | [mm]   |           |            | 18         |            |            | 22         | 2                  | 4                     |                    | 26                         |                    |  |  |  |

 $^{1)}$  This value may only be applied if  $I_t \ge 0.5 \ t_{fix}$ 



Page 26 of 33 of UK Technical Assessment UKTA-0836-22/6210

#### ANNEX C6 Performance / VMZ-A M10-M12 / Characteristic values for seismic action

|                     |                     | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,     | 60  | 75  | 75  | 70  | 80   | 95   | 100  | 110  | 125  |
|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|-----|-----|------|------|------|------|------|
| Anchor size         |                     | VMZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -A    | M10 | M10 | M12 | M12 | M12  | M12  | M12  | M12  | M12  |
| Tension loads       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |     |     |      |      |      |      |      |
| Installation factor | ſ                   | γinst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [-]   |     |     |     |     | 1.0  |      |      |      |      |
| Steel failure, st   | eel zinc plated, st | ainless steel A4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HCR   |     |     |     |     |      |      |      |      |      |
| Characteristic re   | esistance           | $N_{Rk,s,C1}$<br>$N_{Rk,s,C2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [kN]  | 2   | 5   | 35  | 49  | 5    | 4    |      | 57   |      |
| Partial factor      |                     | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [-]   |     |     |     |     | 1.5  |      |      |      |      |
| Pull-out (concre    | ete C20/25 to C50/6 | 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     |     |     |     |      |      |      |      |      |
|                     | Ne                  | 50°C / 80°C <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [kN]  | 14  | 1.5 | 14  | 1.5 | 30   | ).6  | 36.0 | 41.5 | 42.8 |
| Characteristic      | INRk,p,C1           | 72°C / 120°C <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [kN]  | 10  | ).9 | 10  | ).9 | 20   | 0.0  |      | 30.0 |      |
| resistance          | N                   | 50°C / 80°C <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [kN]  | 7   | .4  | 7   | .4  | 8    | .7   |      | 17.6 |      |
|                     | INRk,p,C2           | 72°C / 120°C <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [kN]  | 5   | .1  | 5   | .1  | 6    | .5   |      | 12.3 |      |
| Shear loads         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |     |     |      |      |      |      |      |
| Steel failure wi    | thout lever arm. s  | teel zinc plated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |     |     |     |      |      |      |      |      |
|                     |                     | V <sub>Rk,s,C1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [kN]  | 1   | 1.8 |     |     |      | 27.2 |      |      |      |
| Characteristic re   | esistance           | V <sub>Rk,s,C2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [kN]  | 1:  | 2.6 |     |     |      | 27.2 |      |      |      |
| Partial factor      |                     | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [-]   |     |     |     |     | 1.25 |      |      |      |      |
| Steel failure wit   | thout lever arm. s  | tainless steel A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , HCR |     |     |     |     |      |      |      |      |      |
| Characteristic re   | sistanco            | V <sub>Rk,s,C1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [kN]  | 1:  | 2.9 |     |     |      | 27.2 |      |      |      |
|                     | 515101100           | V <sub>Rk,s,C2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [kN]  | 1:  | 3.8 |     |     |      | 27.2 |      |      |      |
| Partial factor      |                     | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [-]   |     |     |     |     | 1.25 |      |      |      |      |
| Factor for          | filled annular ga   | Ο $ m 	extsf{0}  $ | [-]   |     |     |     |     | 1.0  |      |      |      |      |
| anchorages          | unfilled annular ga | ο α <sub>gap</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [-]   |     |     |     |     | 0.5  |      |      |      |      |

<sup>1)</sup> Maximum long-term temperature / Maximum short-term temperature

ANNEX C7 Performance / VMZ-A M16-M24 / Characteristics values for seismic action

| Table C7: Ch                 | aracteris  | stic values for s                 | eism                                                                                                                      | ic acti   | on, VI     | NZ-AN      | /16 – I    | M24, pe      | rform      | ance c             | atego                      | ry C1 a            | and C2                      | 2                  |  |
|------------------------------|------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|------------|--------------|------------|--------------------|----------------------------|--------------------|-----------------------------|--------------------|--|
| Anchor size                  |            | VM                                | Z-A                                                                                                                       | 90<br>M16 | 105<br>M16 | 125<br>M16 | 145<br>M16 | 160<br>M16   | 115<br>M20 | 170<br>M20<br>(LG) | 190<br>M20<br>(LG)         | 170<br>M24<br>(LG) | 200<br>M24<br>(LG)          | 225<br>M24<br>(LG) |  |
| Tension loa                  | ds         | -                                 |                                                                                                                           | -         | -          | -          | -          |              | -          | -                  |                            |                    |                             | -                  |  |
| Installation fa              | actor      | γinst                             | [-]                                                                                                                       |           |            |            |            |              | 1.0        |                    |                            |                    |                             |                    |  |
| Steel failure,               | , steel zi | nc plated                         |                                                                                                                           | r         |            |            |            |              | r          |                    |                            |                    |                             |                    |  |
| Characteristic<br>resistance | С          | $N_{Rk,s,C1}$<br>$N_{Rk,s,C2}$    | [kN]                                                                                                                      | 88        | 95         | 11         | 1          | 97           | 96         | 18                 | 8                          |                    | 222                         |                    |  |
| Steel failure                | , stainle  | ss steel A4, HC                   | R                                                                                                                         |           |            |            |            |              |            |                    |                            |                    |                             |                    |  |
| Characteristic<br>resistance | с          | Nrk,s,C1<br>Nrk,s,C2              | [kN]                                                                                                                      | 88        | 95         | 11         | 1          | 97           | 114        | 16                 | 5                          |                    | 194                         |                    |  |
| Partial factor               |            | γMs                               | [-]                                                                                                                       |           |            | 1.5        |            |              | 1.68       | 1.                 | 5                          |                    | 1.5                         |                    |  |
| Pull-out (cor                | ncrete C2  | 20/25 to C50/60)                  |                                                                                                                           |           |            |            |            |              |            |                    |                            |                    |                             |                    |  |
|                              | Nound      | 50°C / 80°C <sup>1)</sup>         | [kN]                                                                                                                      | 30.7      | 38.7       |            | 43.7       |              | 44.4       | 88                 | .2                         | 90,7               |                             |                    |  |
| Charac-                      | тякк,р,ст  | 72°C / 120°C 1)                   | [kN]                                                                                                                      | 25.0      | 30.0       |            | 38.5       |              | 29.4       | 55                 | .8                         |                    |                             |                    |  |
| resistance                   | N          | 50°C / 80°C <sup>1)</sup>         | [kN]                                                                                                                      | 16.3      | 22.1       |            | 26.1       |              | 30.9       | 59                 | .7                         |                    | 59.7                        |                    |  |
|                              | INRk,p,C2  | 72°C / 120°C <sup>1)</sup>        | [kN]                                                                                                                      | 10.5      | 14.4       |            | 19.5       |              | 16.2       | 44                 | .4                         |                    | 44.4                        |                    |  |
| <u> </u>                     |            | -                                 |                                                                                                                           |           |            |            |            |              |            |                    |                            |                    |                             |                    |  |
| Shear loads                  | without    | lovor arm stoo                    | lzinc                                                                                                                     | nlato     | 4          |            |            |              |            |                    |                            |                    |                             |                    |  |
| Steer failure                | without    |                                   | [kN]                                                                                                                      | plate     | u          | 39.1       |            |              | 39.1       | 82                 | 3                          |                    | 107                         |                    |  |
| Characteristic resistance    | D          | VRk,s,C2                          | [kN]                                                                                                                      |           |            | 50.4       |            |              | 51         | 108.8<br>(71.      | 3 <sup>1)</sup><br>5)      | 15<br>(1           | 54.9 <sup>1)</sup><br>22.7) |                    |  |
| Partial factor               |            | γMs                               | [-]                                                                                                                       |           |            | 1.25       |            |              | 1.4        | 1.2                | 5                          |                    | 1.25                        |                    |  |
| Steel failure                | without    | lever arm, stai                   | nless                                                                                                                     | steel     | A4, H0     | CR         |            |              |            |                    |                            |                    |                             |                    |  |
| Characteristi                | 2          | V <sub>Rk,s,C1</sub>              | [kN]                                                                                                                      |           |            | 39.1       |            |              | 39.1       | 72.                | 2                          |                    | 93                          |                    |  |
| resistance                   |            | V <sub>Rk,s,C2</sub>              | VRk,s,C1         [KN]         39.1         39.1           VRk,s,C2         [kN]         50.4         62.6 $\binom{6}{10}$ |           |            |            |            | 95.6<br>(62. | 1)<br>8)   | 13<br>(            | 35.7 <sup>1)</sup><br>107) |                    |                             |                    |  |
| Partial factor               |            | γMs                               | [-]                                                                                                                       |           |            | 1.25       |            |              | 1.4        | 1.2                | 5                          |                    | 1.25                        |                    |  |
| Factor for                   | filled an  | nular gap α <sub>gap</sub>        | [-]                                                                                                                       |           |            |            |            |              | 1.0        |                    |                            |                    |                             |                    |  |
| anchorages<br>with           | unfille    | d annular<br>gap α <sub>gap</sub> | [-]                                                                                                                       |           |            |            |            |              | 0.5        |                    |                            |                    |                             |                    |  |

 $^{1)}$  This value may only be applied if  $I_t \geq 0.5 \; t_{\text{fix}}$  (see Annex C4)

#### ANNEX C8 Performance / VMZ-A / Displacements under tension loads

| Anchor size                                  | VM        | Z-A   | 40<br>M8 | 50<br>M8    | 60<br>M10 | 75<br>M10 | 75<br>M12 | 70<br>M12 | 80<br>M12 | 95<br>M12 | 100<br>M12 | 110<br>M12 | 125<br>M12 |
|----------------------------------------------|-----------|-------|----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| Tension load in cracked concrete             | Ν         | [kN]  | 4.3      | 6.1         | 8.0       | 11.1      | 11.1      | 10.0      | 12.3      | 15.9      | 17.1       | 19.8       | 24.0       |
| Dianlacoment                                 | δνο       | [mm]  | 0.       | .5          | 0.5       | 0.6       |           |           | 0.6       |           |            | 0          | .7         |
| Displacement                                 | δn∞       | [mm]  |          |             |           |           |           | 1.3       |           |           |            |            |            |
| Tension load in<br><b>uncracked</b> concrete | Ν         | [kN]  | 4.3      | 8.5         | 11.1      | 15.6      | 15.6      | 14.1      | 17.2      | 19.0      | 24.0       | 23,8       | 23,8       |
| Displacement                                 | δνο       | [mm]  | 0.2      | 0.4         | 0         | .4        |           |           | 0.4       |           |            | 0          | .6         |
| Displacement                                 | δn∞       | [mm]  |          |             |           |           |           | 1.3       |           |           |            |            |            |
| Displacements under seismic te               | nsion     | loads | C2       |             |           |           |           |           |           |           |            |            |            |
| Displacements for DLS $\delta_{N,N}$         | C2(DLS)   | [mm]  | no pe    | erfor-      | 1.        | 0         | 1.        | 0         | 1         | .3        |            | 1.1        |            |
| Displacements for LILS Shu                   | 20/111 61 | [mm]  | ma       | nce<br>seed | 3         | 0         | 3         | 0         | 3         | 9         |            | 3.0        |            |

# Table C9: Displacements under tension loads, VMZ-A M16 – M24

| Anchor size                                  | VM      | Z-A   | 90<br>M16 | 105<br>M16 | 125<br>M16 | 145<br>M16 | 160<br>M16 | 115<br>M20 | 170<br>M20<br>(LG | 190<br>M20<br>(LG | 170<br>M24<br>(LG | 200<br>M24<br>(LG | 225<br>M24<br>(LG |
|----------------------------------------------|---------|-------|-----------|------------|------------|------------|------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Tension load in <b>cracked</b> concrete      | Ν       | [kN]  | 14.6      | 18.4       | 24.0       | 30.0       | 34.7       | 21.1       | 38.0              | 44.9              | 38.0              | 48.5              | 57.9              |
| Displacement                                 | δνο     | [mm]  |           | 0.7        |            | 0.8        | 1.2        | 0.7        | 0                 | .8                | 0.8               | 0                 | .9                |
| Displacement                                 | δn∞     | [mm]  |           | 1          | .3         |            | 1.6        | 1.1        | 1                 | .3                |                   | 1.3               |                   |
| Tension load in<br><b>uncracked</b> concrete | Ν       | [kN]  | 20.5      | 25.9       | 33.0       | 35.7       | 48.1       | 29.6       | 53.3              | 63.0              | 53.3              | 67.9              | 81.1              |
| Displacement                                 | δνο     | [mm]  |           | 0          | .6         |            | 0.8        | 0.5        | 0                 | .6                |                   | 0.6               |                   |
| Displacement                                 | δn∞     | [mm]  |           | 1          | .3         |            | 1.6        | 1.1        | 1                 | .3                |                   | 1.3               |                   |
| Displacements under seismic te               | nsion   | loads | C2        |            |            |            | -          | -          | -                 |                   | -                 |                   |                   |
| Displacements for DLS $\delta_{N,0}$         | C2(DLS) | [mm]  | 1         | .6         |            | 1.5        |            | 1.7        | 1                 | .9                |                   | 1.9               |                   |
| Displacements for ULS $\delta_{N,0}$         | C2(ULS) | [mm]  | 3         | .7         |            | 4.4        |            | 4.0        | 4                 | .5                |                   | 4.5               |                   |

| ANNEX C9                                              |
|-------------------------------------------------------|
| Performance / VMZ-A / Displacements under shear loads |

| Anchor size            | VM                 | Z-A    | 40<br>M8 | 50 MR  | 60<br>60 | 75<br>M10 | 75<br>M12 | 70 | 80 | 95<br>M12 | 100<br>M12 | 110<br>M12 | 125<br>M12 |
|------------------------|--------------------|--------|----------|--------|----------|-----------|-----------|----|----|-----------|------------|------------|------------|
|                        |                    |        | INIO     | INIO   | WITU     | WITU      |           |    |    |           |            |            |            |
| Shear load             | V                  | [kN]   | 8.       | 3      | 13       | .3        |           |    |    | 19.3      |            |            |            |
| Disula como nte        | δvo                | [mm]   | 2.4      | 2.5    | 2.       | 9         |           |    |    | 3.3       |            |            |            |
| Displacements          | δv∞                | [mm]   | 3.6      | 3.8    | 4.       | 4         |           |    |    | 5.0       |            |            |            |
| Displacements under se | ismic shea         | r load | s C2     |        | •        |           |           |    |    |           |            |            |            |
| Displacements for DLS  | $\delta$ V,C2(DLS) | [mm]   | no pe    | erfor- | 2.       | 1         |           |    |    | 2.5       |            |            |            |
| Displacements for ULS  | $\delta$ V,C2(ULS) | [mm]   | asse     | ssed   | 3.       | 7         |           |    |    | 5.1       |            |            |            |

# Table C11: Displacements under shear loads VMZ-A M16 – M24

| Anchor size               | VM              | Z-A     | 90<br>M16 | 105<br>M16 | 125<br>M16 | 145<br>M16 | 160<br>M16 | 115<br>M20 | 170<br>M20<br>(LG) | 190<br>M20<br>(LG) | 170<br>M24<br>(LG) | 200<br>M24<br>(LG) | 225<br>M24<br>(LG) |
|---------------------------|-----------------|---------|-----------|------------|------------|------------|------------|------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Shear load                | V               | [kN]    |           |            | 36         |            |            | 44         | 7<br>(4            | 5<br>9)            |                    | 89<br>(71)         |                    |
| Dianlagomento             | δ <sub>V0</sub> | [mm]    |           |            | 3.8        |            |            | 3.0        | 4<br>(3            | .3<br>.0)          |                    | 4.6<br>(3,5)       |                    |
| Displacements             | δv∞             | [mm]    |           |            | 5.7        |            |            | 4.5        | 6<br>(4            | .5<br>.5)          |                    | 6.9<br>(5,3)       |                    |
| Displacements under seisn | nic shea        | ar load | s C2      |            |            |            |            |            | -                  |                    |                    |                    |                    |
| Displacements for DLS δ   | V,C2(DLS)       | [mm]    |           |            | 2.9        |            |            |            | 3.5                |                    |                    | 3.7                |                    |
| Displacements for ULS δ   | V,C2(ULS)       | [mm]    |           |            | 6.8        |            |            |            | 9.3                |                    |                    | 9.3                |                    |

ANNEX C10 Performance / VMZ-IG / Displacements under tension loads

| Table C12: Cha                                                                                                                                  | racteristic values                                                          | s for t             | ension     | load             | s, VM              | Z-IG               |                    |                    |                    |                    |                    |                  |                    |                    |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|--------------------|--------------------|--------------------|
| Anchor size                                                                                                                                     |                                                                             | V                   | /MZ-<br>IG | 40<br>M6         | 50<br>M6           | 60<br>M8           | 75<br>M8           | 70<br>M10          | 80<br>M10          | 90<br>M12          | 105<br>M12         | 125<br>M12       | 115<br>M16         | 170<br>M16         | 170<br>M20         |
| Installation fac                                                                                                                                | tor                                                                         | γinst               | [-]        |                  |                    |                    |                    |                    | 1                  | .0                 |                    |                  |                    |                    |                    |
| Steel failure                                                                                                                                   |                                                                             |                     | •          |                  |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| Characteristic                                                                                                                                  | Steel, zinc p                                                               | blated              | [kN]       | 15               | 16                 | 19                 | 29                 | 3                  | 5                  |                    | 67                 |                  | 52                 | 125                | 108                |
| resistance N <sub>Rk,s</sub>                                                                                                                    | A4,                                                                         | HCR                 | [kN]       | 1                | 1                  | 19                 | 21                 | 3                  | 3                  |                    | 47                 |                  | 65                 | 88                 | 94                 |
| Partial factor                                                                                                                                  |                                                                             | γMs                 | [-]        |                  |                    |                    |                    | •                  | 1                  | .5                 |                    |                  |                    |                    |                    |
| Pull-out                                                                                                                                        |                                                                             |                     |            |                  |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| Characteristic re                                                                                                                               | esistance (concret                                                          | e C20               | /25)       |                  |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| uncracked                                                                                                                                       | 50°C / 80°C <sup>1)</sup>                                                   |                     | [kN]       | 9                | 17.4               | 22.9               | 32                 | 28.8               | 35.2               | 42                 | 52.9               | 68.8             | 60.7               | 109                | 109                |
| concrete                                                                                                                                        | 72°C / 120°C <sup>1)</sup>                                                  | N <sub>Rk,p</sub>   | [kN]       | 6                | 9                  | 16                 | 16                 | 16                 | 25                 | 25                 | 35                 | 50               | 40                 | 75                 | 95                 |
| cracked                                                                                                                                         | 50°C / 80° C <sup>1)</sup>                                                  |                     | [kN]       | 8.7              | 12.2               | 16                 | 22.4               | 20.2               | 24.6               | 29.4               | 37.1               | 48.1             | 42.5               | 76.3               | 76.3               |
| concrete                                                                                                                                        | 72°C / 120° C <sup>1)</sup>                                                 | N <sub>Rk,p</sub>   | [kN]       | 5                | 7.5                | 12                 | 12                 | 16                 | 20                 | 20                 | 30                 | 50               | 30                 | 60                 | 75                 |
| Splitting                                                                                                                                       |                                                                             | -                   |            |                  |                    |                    |                    |                    |                    |                    |                    |                  | <u> </u>           |                    |                    |
| Splitting for sta                                                                                                                               | Splitting for standard thickness of concrete                                |                     |            |                  |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| Splitting for standard thickness of concrete<br>Standard thickness of concrete $h_{min,1} \ge [mm]$ 100 120 150 140 160 180 200 250 230 340 340 |                                                                             |                     |            |                  |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| Case 1                                                                                                                                          |                                                                             |                     |            |                  |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| Characteristic re<br>(concrete C20/2                                                                                                            | esistance N<br>25)                                                          | 10 <sub>Rk,sp</sub> | [kN]       | 7.5              | 9                  | 16                 | 20                 | 20                 | 35.2               | 40                 | 50                 | 50               | 60.7               | 109                | 109                |
| Case 2                                                                                                                                          |                                                                             |                     | ſ          |                  |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| Characteristic e                                                                                                                                | dge distance                                                                | Ccr,sp              | [mm]       | 3                | h <sub>ef</sub>    | 2.5h <sub>ef</sub> | 3.5h <sub>ef</sub> | 2.5h <sub>ef</sub> | 1.5h <sub>ef</sub> |                    | 2 h <sub>ef</sub>  |                  | 1.5                | h <sub>ef</sub>    | 1.5h <sub>ef</sub> |
| Splitting for mi                                                                                                                                | inimum thicknes                                                             | s of c              | oncret     | е                |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| Minimum thickn                                                                                                                                  | ess of concrete h                                                           | min,2 ≥             | [mm]       | 8                | 0                  | 100                | 110                | 11                 | 10                 | 130                | 150                | 160              | 160                | 220                | 220                |
| Case 1                                                                                                                                          |                                                                             |                     |            |                  |                    |                    |                    |                    |                    |                    | 1                  | 1                |                    |                    |                    |
| Characteristic re<br>(concrete C20/2                                                                                                            | esistance N<br>25)                                                          | 10 <sub>Rk,sp</sub> | [kN]       | 7.5              | 2)                 | 1                  | 6                  | 20                 | 25                 | 35                 | 50                 | 40               | 2)                 | 75                 | 109                |
| Case 2                                                                                                                                          |                                                                             |                     |            |                  |                    |                    |                    | 1                  |                    |                    | 1                  | 1                |                    |                    |                    |
| Characteristic e                                                                                                                                | dge distance                                                                | Ccr,sp              | [mm]       | 3h <sub>ef</sub> | 3.5h <sub>ef</sub> | 3h <sub>ef</sub>   | 3.5h <sub>ef</sub> | 3.5h <sub>ef</sub> | 3h <sub>ef</sub>   | 2.5h <sub>ef</sub> | 2.5h <sub>ef</sub> | 3h <sub>ef</sub> | 2.5h <sub>ef</sub> | 2.6h <sub>ef</sub> | 2.6h <sub>ef</sub> |
| Increasing facto<br>N <sub>Rk,p</sub> and N <sup>0</sup> <sub>Rk,sp</sub>                                                                       | Increasing factor for $\psi_{c}$ [-] $\left(\frac{f_{ck}}{20}\right)^{0.5}$ |                     |            |                  |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| Concrete cone                                                                                                                                   | failure                                                                     |                     |            |                  |                    |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |
| Effective ancho                                                                                                                                 | rage depth                                                                  | hef                 | [mm]       | 40               | 50                 | 60                 | 75                 | 70                 | 80                 | 90                 | 105                | 125              | 115                | 170                | 170                |
| <ol> <li>Maximum long-tern</li> <li>No performance as</li> </ol>                                                                                | m temperature / Maxir<br>ssessed                                            | num sh              | ort-term   | temper           | ature              |                    |                    |                    |                    |                    |                    |                  |                    |                    |                    |

#### ANNEX C11 Performance / VMZ-IG / Displacement under shear load

| Anchor size                               | VM                     | Z-IG   | 40<br>M6 | 50<br>M6 | 60<br>M8 | 75<br>M8 | 70<br>M10 | 80<br>M10 | 90<br>M12 | 105<br>M12 | 125<br>M12 | 115<br>M16 | 170<br>M16 | 170<br>M20 |
|-------------------------------------------|------------------------|--------|----------|----------|----------|----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|
| Installation factor                       | γinst                  | [-]    |          |          |          |          |           | 1         | ,0        |            |            |            |            |            |
| Steel failure without                     | lever arm              |        |          |          |          |          |           |           |           |            |            |            |            |            |
| Characteristic                            | Steel, zinc plated     | [kN]   | 8.       | 0        | 9.5      | 15       | 1         | 8         |           | 34         |            | 26         | 63         | 54         |
| resistance V <sup>0</sup> <sub>Rk,s</sub> | A4, HCR                | [kN]   | 5.       | 5        | 9.5      | 10       | 1         | 6         |           | 24         |            | 32         | 44         | 47         |
| Partial factor                            | γMs                    | [-]    |          |          |          |          |           | 1.        | 25        |            |            |            |            |            |
| Ductility factor                          | <b>k</b> 7             | [-]    |          |          |          |          |           | 1         | .0        |            |            |            |            |            |
| Steel failure with lev                    | ver arm                |        |          |          |          |          |           |           |           |            |            |            |            |            |
| Characteristic                            | Steel, zinc plated     | [kN]   | 1        | 2        | 3        | 0        | 6         | 0         |           | 105        |            | 212        | 266        | 519        |
| bending                                   | A4. HCR                | [kN]   | 8.       | 5        | 2        | 1        | 4         | 2         |           | 74         |            | 187        | 187        | 365        |
| Partial factor                            | γ <sub>Ms</sub>        | [-]    | _        | -        |          |          |           | 1.        | 25        |            |            | _          | _          |            |
| Concrete pry-out fai                      | lure                   |        |          |          |          |          |           |           |           |            |            |            |            |            |
| Pry-out factor                            | k <sub>8</sub>         | [-]    |          |          |          |          |           | 2         | .0        |            |            |            |            |            |
| Concrete edge failu                       | re                     |        |          |          |          |          |           |           |           |            |            |            |            |            |
| Effective length of and shear load        | chor in I <sub>f</sub> | [mm]   | 40       | 50       | 60       | 75       | 70        | 80        | 90        | 105        | 125        | 115        | 170        | 170        |
| Outside diameter of a                     | [mm]                   | 1      | 0        | 1        | 2        | 1        | 4         |           | 18        | •          | 22         | 24         | 26         |            |
| Table C14: Displacen                      | nents under tensio     | n load | s, VN    | Z-IG     |          |          |           |           |           |            |            |            |            |            |
| Anchoroizo                                | 14                     |        | 40       | 50       | 60       | 75       | 70        | 80        | 90        | 105        | 125        | 115        | 170        | 170        |

| Anchor size                        | V   | MZ-IG | 40<br>M6 | 50<br>M6 | 60<br>M8 | 75<br>M8 | 70<br>M10 | 80<br>M10 | 90<br>M12 | 105<br>M12 | 125<br>M12 | 115<br>M16 | 170<br>M16 | 170<br>M20 |
|------------------------------------|-----|-------|----------|----------|----------|----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|
| Tension load in cracked concrete   | N   | [kN]  | 4.3      | 6.1      | 8.0      | 11.1     | 10.0      | 12.3      | 14.6      | 18.4       | 24.0       | 21.1       | 38.0       | 38.0       |
| Dianlagement                       | δνο | [mm   | 0.       | 5        | 0.5      | 0.6      | 0.        | 6         |           | 0.7        |            | 0.7        | 0.8        | 0.8        |
| isplacement                        | δΝ  | [mm   |          |          |          |          | 1.3       |           |           |            |            | 1.1        | 1.3        | 1.3        |
| Tension load in uncracked concrete | N   | [kN]  | 4.3      | 8.5      | 11.1     | 15.6     | 14.1      | 17.2      | 20.5      | 25.9       | 33.0       | 29.6       | 53.3       | 53.3       |
| isplacement                        | δνο | [mm   | 0.2      | 0.4      | 0.       | 4        | 0.        | 4         |           | 0.6        |            | 0.5        | 0.6        | 0.6        |
| Displacement                       | δΝ  | [mm   |          |          |          |          | 1.3       |           |           |            |            | 1.1        | 1.3        | 1.3        |

# Table C15: Displacements under shear loads, VMZ-IG

| Anchor size                                   | VI  | MZ-IG | 40<br>M6 | 50<br>M6 | 60<br>M8 | 75<br>M8 | 70<br>M10 | 80<br>M10 | 90<br>M12 | 105<br>M12 | 125<br>M12 | 115<br>M16 | 170<br>M16 | 170<br>M20 |
|-----------------------------------------------|-----|-------|----------|----------|----------|----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|
| Shear load<br><b>Steel. zinc plated</b>       | V   | [kN]  | 4.       | 6        | 5.4      | 8.4      | 10        | .1        |           | 19.3       |            | 14.8       | 35.8       | 30.7       |
| Dianlacoment                                  | δνο | [mm   | 0.       | 4        | 0.5      | 0.4      | 0.        | 5         |           | 1.2        |            | 0.8        | 1.9        | 1.2        |
| Displacement                                  | δv∞ | [mm   | 0.       | 7        | 0.8      | 0.7      | 0.        | 8         |           | 1.9        |            | 1.2        | 2.8        | 1.9        |
| Shear load<br><b>Stainless steel A4 / HCR</b> | V   | [kN]  | 3.       | 2        | 5.4      | 5.9      | 9.        | 3         |           | 13.5       |            | 18.5       | 25.2       | 26.9       |
| Dianlacoment                                  | δνο | [mm   | 0.       | 3        | 0.5      | 0.3      | 0.        | 5         |           | 0.9        |            | 1.0        | 1.4        | 1.1        |
| Displacement                                  | δv∞ | [mm   | 0.       | 4        | 0.7      | 0.5      | 0.        | 7         |           | 1.4        |            | 1.5        | 2.1        | 1.6        |



British Board of Agrément, 1<sup>st</sup> Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG