

FIRIKA®

Consoles isolantes pour dalles et murs

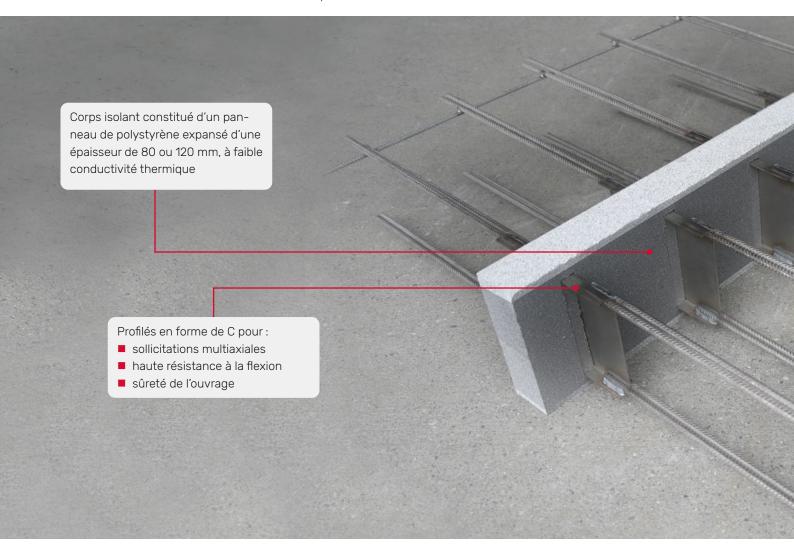
Table des matières FIRIKA®

Table des matières

Introduction	
Description du système	4
Avantages du système	5
Gamme	
Variantes d'exécution	6
Géométrie et nombre d'étriers de support	8
Résistance au feu	9
Nomenclature	9
Dimensionnement	
Base du dimensionnement	10
Diagrammes de dimensionnement (diagrammes M-V)	11
Logiciel de dimensionnement	21
Armature nécessaire incombant au client	22
Résistance aux actions horizontales	23
Recommandation importante pour la modélisation FEM	23
Aptitude au service	24
Physique des ouvrages	
Introduction	25
Valeurs caractéristiques relatives à la stabilité physique des ouvrages	25
Construction et instructions de montage	
Joints de dilatation	30
Coins	30
Instructions de montage	32
Service et conseils	34
Planification numérique BIM	34
Aperçu de la gamme	34

Introduction FIRIKA®

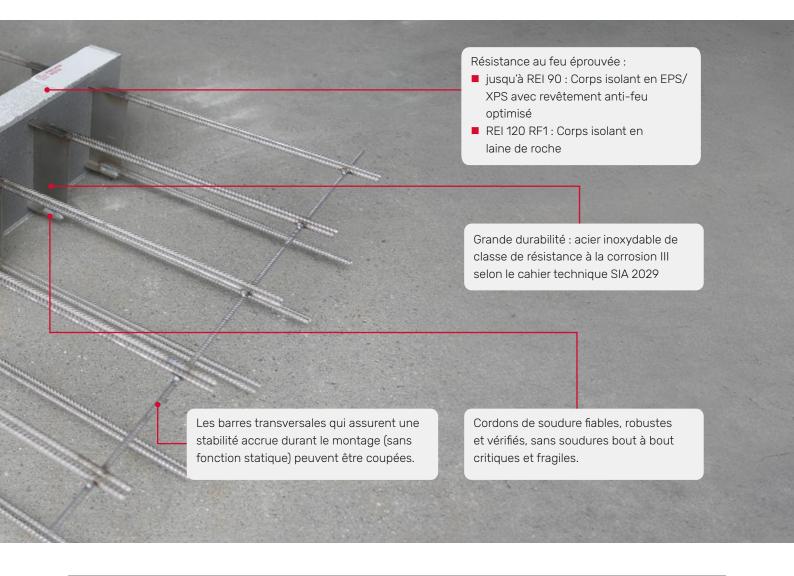
Introduction


Description du système

Les consoles isolantes FIRIKA® sont des éléments de raccordement à isolation thermique porteuses qui permettent de relier des éléments structuraux en béton armé. Ils permettent d'améliorer l'isolation thermique en cas de jonction d'éléments en béton armé, intérieurs et extérieurs.Parmi les applications rencontrées, citons les dalles de balcon, les jonctions de plafonds, les raccordements muraux et les jonctions de dalles et murs.

Les consoles isolantes FIRIKA® comprennent une ossature efficace du point de vue statique, composée d'étriers de support indépendants les uns des autres et d'un corps isolant. Les étriers de support sont constitués de profilés en C et de barres d'armature de 10 mm de diamètre, soudées solidement aux membrures supérieure et inférieure des profilés en C. Cette structure permet de répondre aux sollicitations exercées dans tous les sens : elle permet de

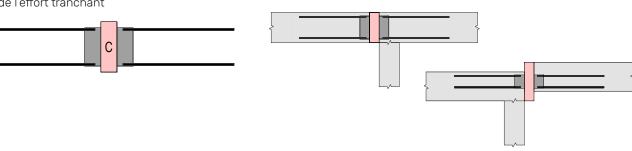
reprendre les moments de flexion positifs et négatifs ainsi que les efforts tranchants transversaux et longitudinaux par rapport au plan.


Elle permet également de reprendre les efforts normaux exercés en parallèle des étriers de support. Le transfert des efforts des différents étriers de support aux éléments en béton armé adjacents s'effectue au travers d'une armature de raccordement appropriée. Cette dernière est soudée à l'aide de robots avant d'être mise à l'épreuve. Les cordons de soudure répondent aux exigences de la norme EN ISO 17660-1. Est utilisé un acier inoxydable duplex pour assurer la classe de résistance à la corrosion III selon la norme SIA 2029:2013. Le corps isolant est composé de mousse rigide de polystyrène de 80 ou 120 mm d'épaisseur ou de laine de roche à faible conductivité thermique. Les corps isolants sont revêtus de panneaux de protection incendie lorsqu'ils doivent répondre aux exigences de protection incendie REI 30, 60 et 90. Les corps isolants revêtus de laine de roche permettent quant à eux d'atteindre la classe de protection incendie REI 120.

Introduction FIRIKA®

Avantages du système

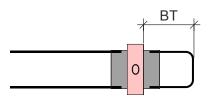
- Validation scientifique
- Dimensionnement intuitif grâce au logiciel de calcul et au diagramme de dimensionnement M-V
- Haute résistance à la corrosion grâce à l'usage d'acier inoxydable duplex
- Résistance accrue à la flexion et au cisaillement
- Sécurité de l'ouvrage grâce à une répartition symétrique des sollicitations au niveau des profilés en C
- Faible conductibilité thermique
- Matériau isolant : EPS, XPS ou laine de roche
- Résistance au feu possible jusqu'à REI 120


Gamme FIRIKA®

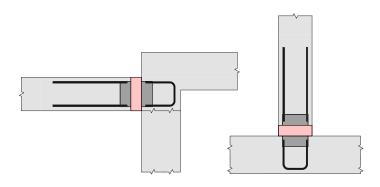
Gamme

Variantes d'exécution

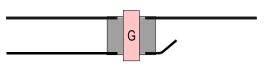
p. ex. : dalle de balcon en porte-à-faux

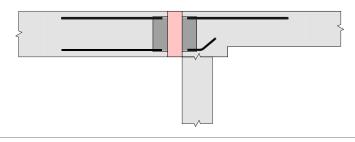


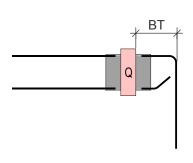
O : reprise du moment de flexion et de l'effort tranchant

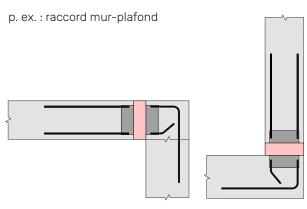

A : profondeur de l'étrier (BT) 120 mm (notamment de l'effort tranchant)

B: profondeur de l'étrier (BT) 170 mm


C: profondeur de l'étrier (BT) 220 mm


p. ex. : dalle de balcon en porte-à-faux/raccord pied de mur

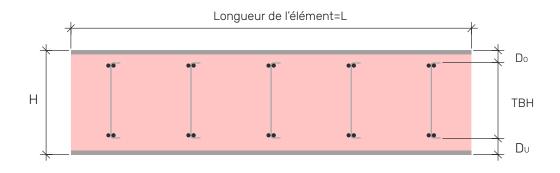

G : reprise du moment de flexion négatif et de l'effort tranchant



p. ex. : dalle de balcon en porte-à-faux dotée d'un élément de béton unilatéral

Q : reprise du moment de flexion négatif et de l'effort tranchant Profondeur de l'étrier (BT) sur mesure

Autres variantes sur demande



Gamme FIRIKA®

Géométrie et nombre d'étriers de support

Les consoles isolantes FIRIKA® conviennent aux éléments structuraux (dalle ou mur) dont l'épaisseur dépasse les 160 mm. Les étriers de support peuvent avoir une hauteur de 110, 130, 150, 170 ou 190 mm. La hauteur d'isolation peut être choisie librement en fonction de l'épaisseur de l'élément structural.

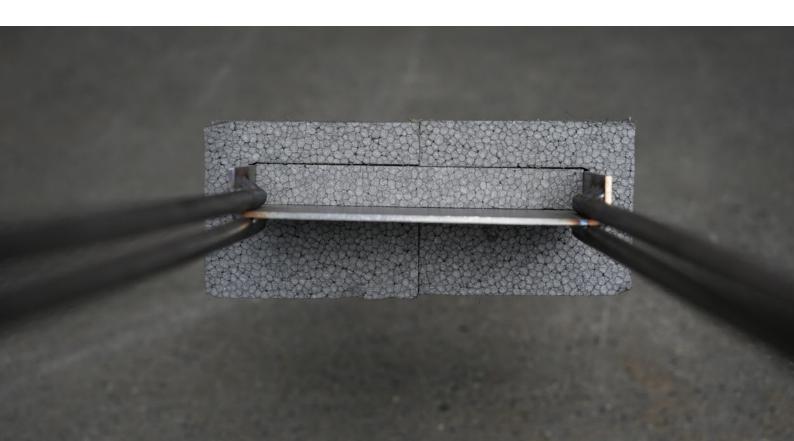
H (cm)	≥ 16	≥ 18	≥ 20	≥ 22	≥ 24
TBH (cm)	11	13	15	17	19

Type d'élément	L (cm)	Nombre d'étriers de support = TBA	d₀ (cm)	D₀ bzw. D∪ (mm)
« Standard »	100	2 à 10	8/12	25 à 195 (pas de 5mm)
« Demi »	50	2 à 4	8/12	25 à 195 (pas de 5mm)
« Compact »	1÷90 (pas de 10 cm)	1à 9	8/12	25 à 195 (pas de 5mm)

Enrobage supérieur (c_o) = D_o + 5mm Enrobage inférieur (c_U) = D_U + 5mm

Gamme FIRIKA®

Résistance au feu

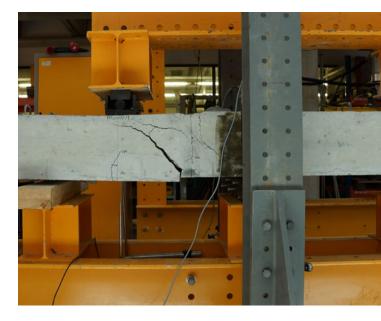

		Classe de protection incendie							
		RO	REI30	REI60	REI90	REI120			
	EPS	Doggodtá	Respecté avec des panneaux de	Respecté avec des panneaux de	Respecté avec des panneaux de				
Matériau	Matériau XPS	Respecté	protection incen- die de 10 mm	protection incen- die de 10 mm	protection incen- die de 15 mm	-			
	Laine de roche (SW)		Respecté	Respecté	Respecté	Respecté			

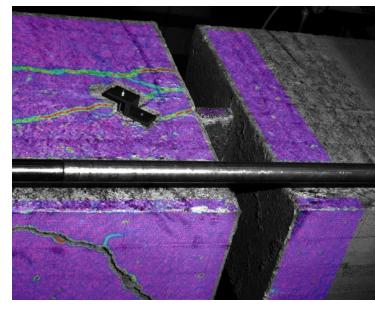
Pour répondre aux exigences de protection incendie REI 30, REI 60 et REI 90, on utilise des éléments plus longs de 20 ou 30 mm en cas de besoin de revêtement sur la face frontale.

Nomenclature

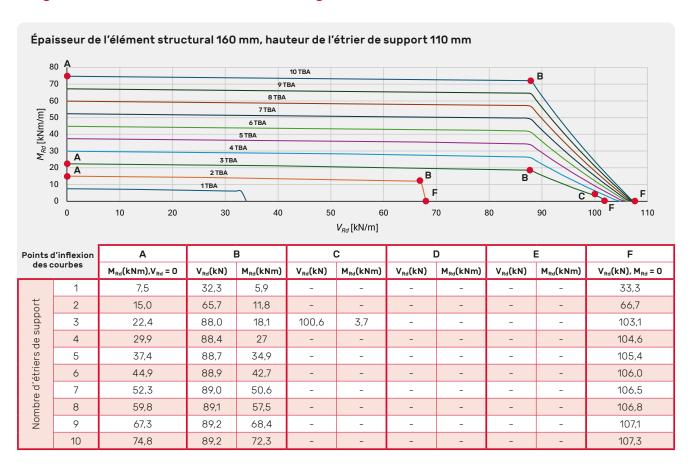
Firika® 0A/8-19/25.25.8/100/EPS/REI90 BT (mm) Classe de protecti-on incendie Variante Matériau ТВА TBH (cm) D_o (mm) D_U (mm) d_D (cm) L(cm) d'exécution isolant ОА 120 8 19 25 25 8 100 EPS REI90

	Firika® Z/280.12/100/SW/REI120									
Variante d'exécution	H (mm)	d₀ (cm)	L (cm)	Matériau isolant	Classe de protection incendie					
Z (isolation intermédiaire)	280	12	100	Laine de roche	REI120					

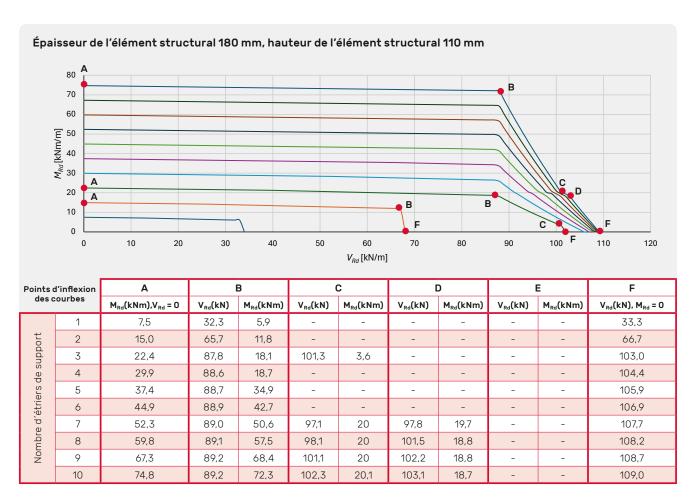


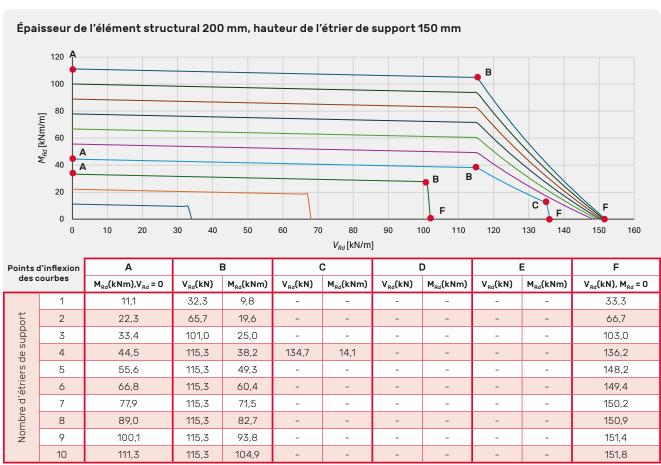

Dimensionnement

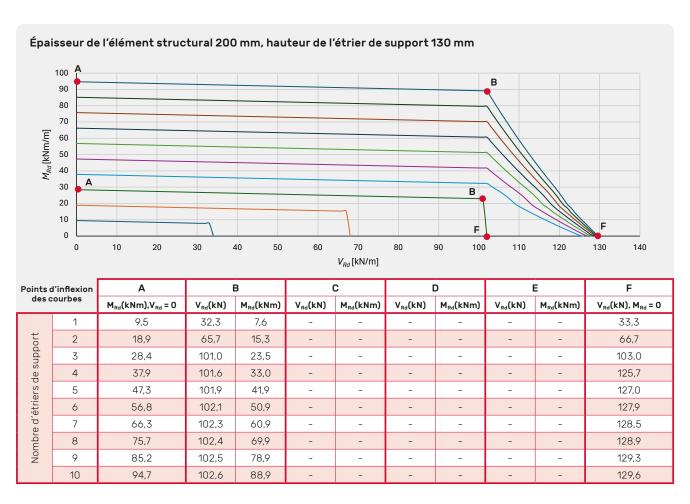
Base du dimensionnement

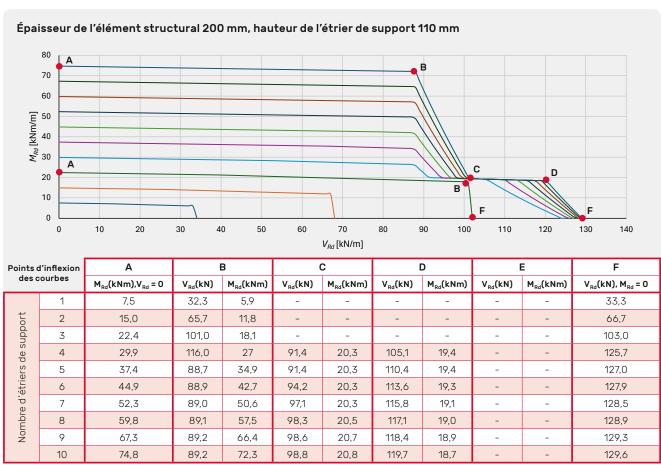

Les propriétés structurelles et la résistance à la rupture des consoles isolantes FIRIKA® ont fait l'objet d'études expérimentales, numériques et analytiques. La modélisation FEM des profilés C a permis de confirmer la capacité de ces derniers à développer leur résistance plastique lorsqu'ils sont soumis à des sollicitations de cisaillement et de flexion, l'impact des effets de torsion et de stabilité étant négligeable.

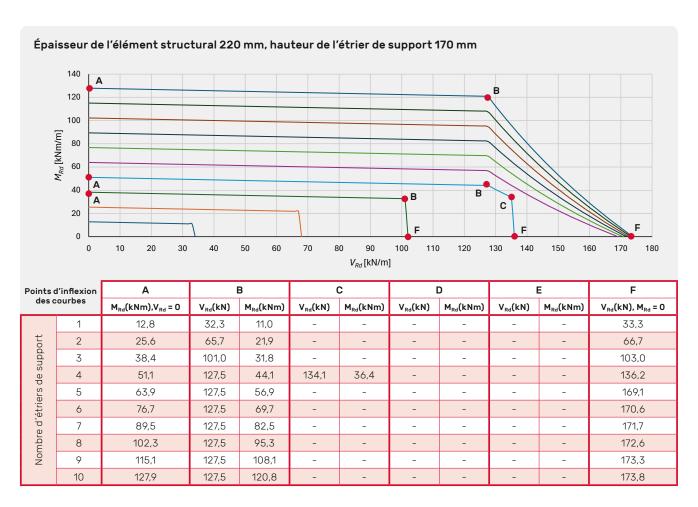
Une campagne d'essais impliquant de nombreuses poutres en béton armé à l'échelle 1:1 équipées de consoles isolantes FIRIKA® a permis d'étudier les modes de rupture ainsi que les performances structurelles du système en conditions d'utilisation et en conditions de charge de rupture. Les variations ont porté sur le rapport entre le moment de flexion et l'effort tranchant (M-V), le nombre et la position des consoles isolantes, les détails de l'armature ainsi que la distance entre l'élément de raccordement et le point d'introduction des charges.

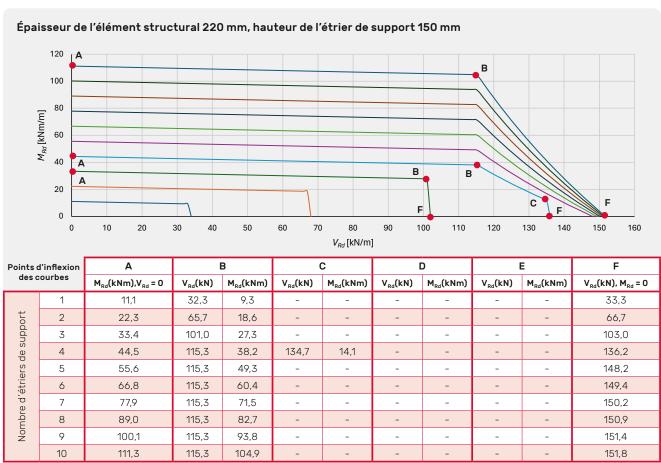




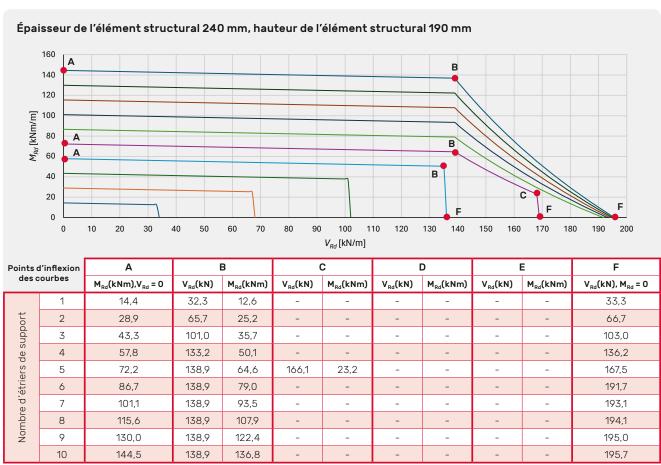

Diagrammes de dimensionnement (Diagrammes M-V)

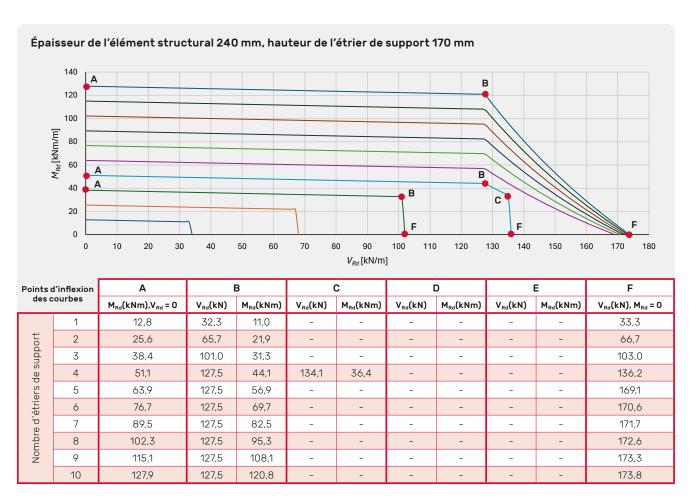


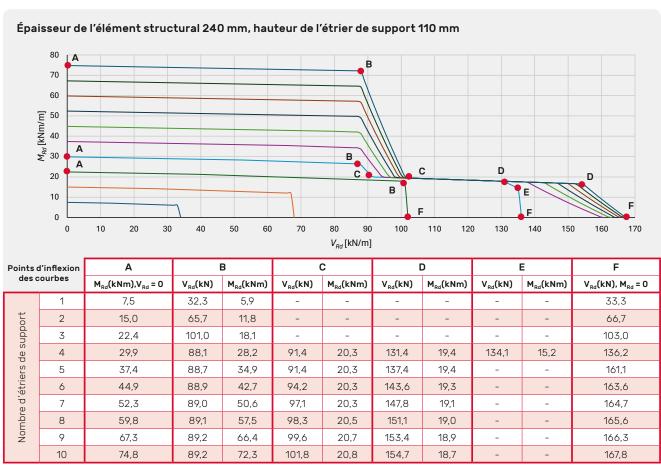


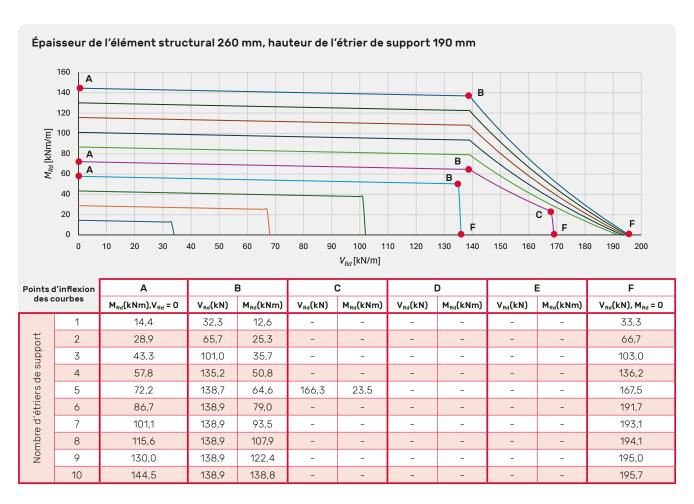


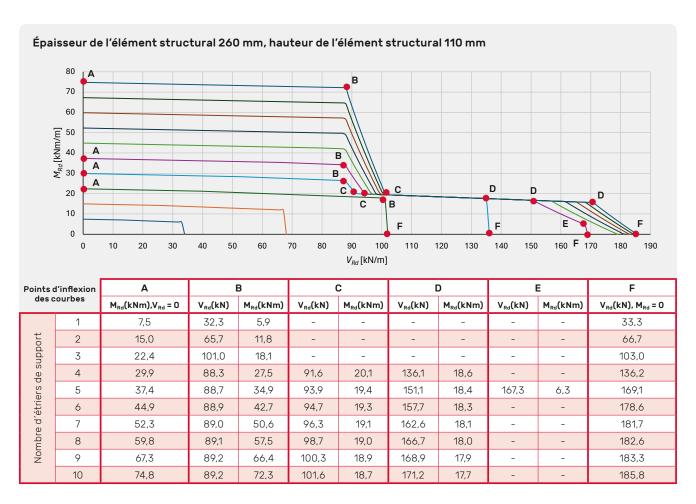


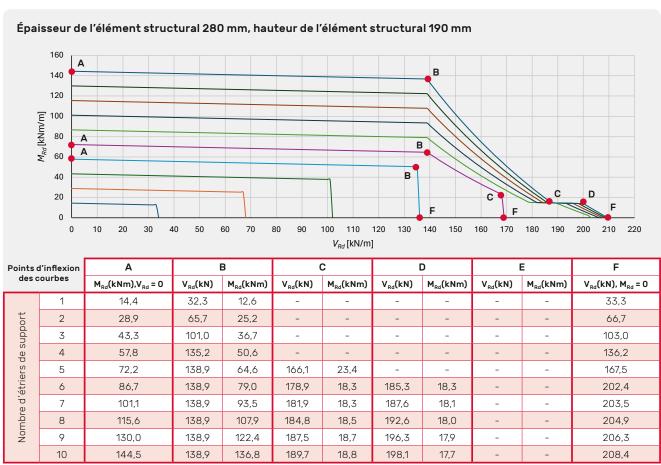


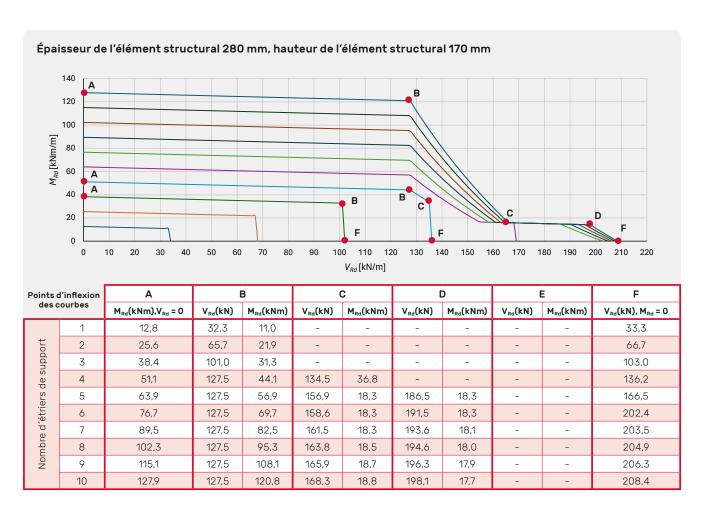


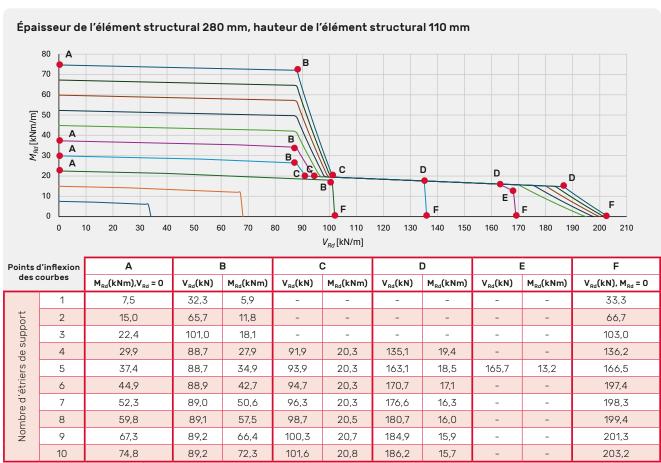


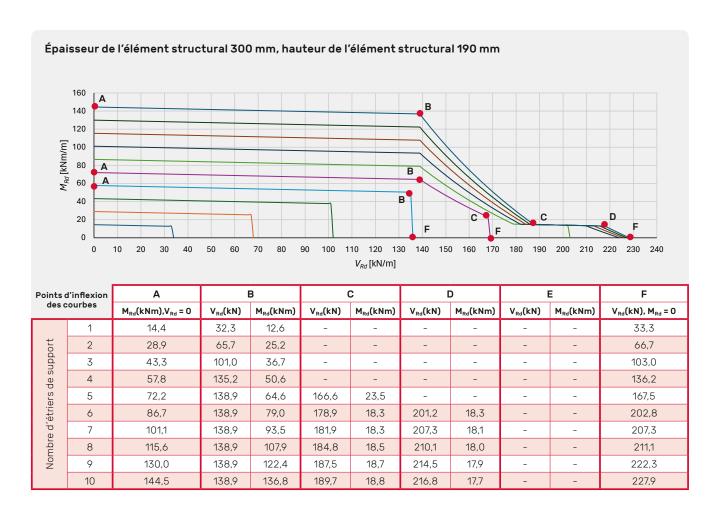


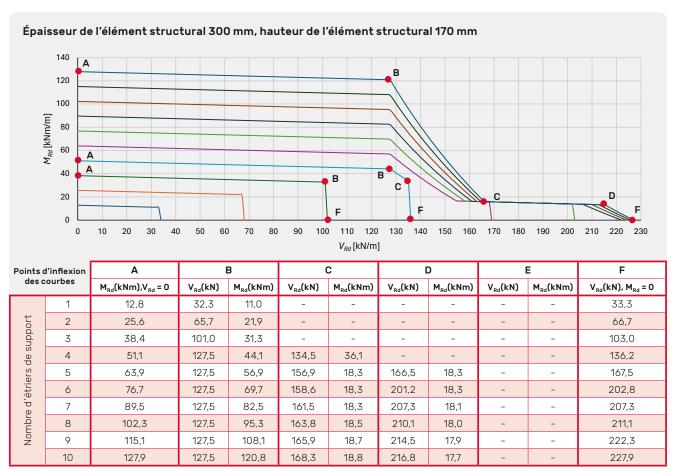


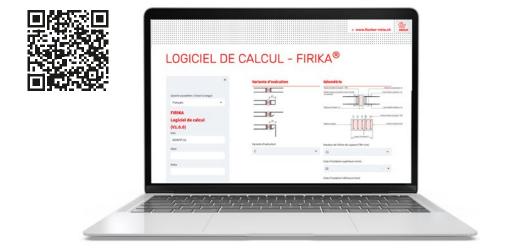






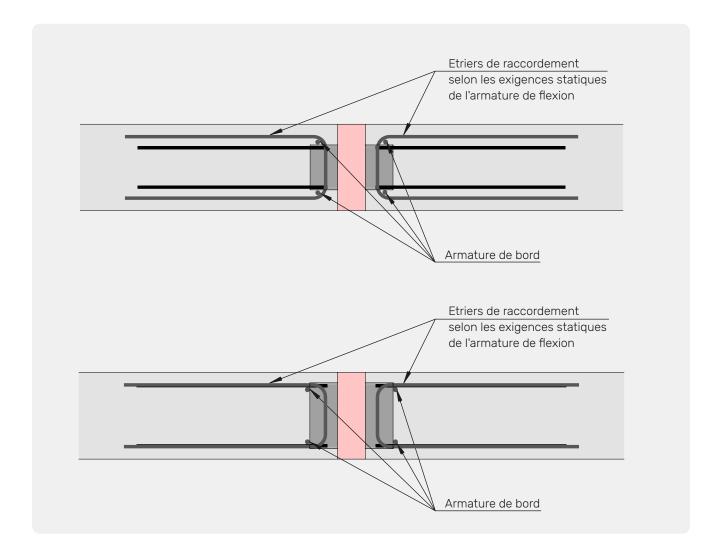






Tous les diagrammes de dimensionnement et les tableaux se rapportent à un type de béton C25/30 et à un enrobage de béton de 30 mm.

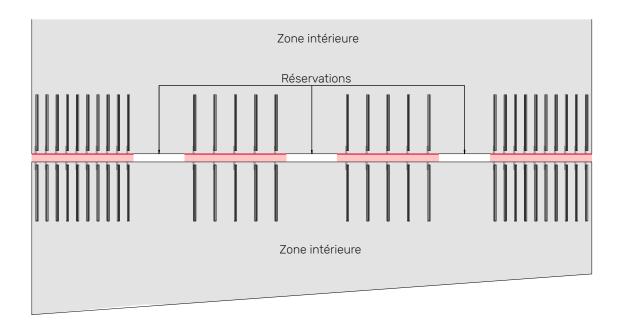
Logiciel de dimensionnement


Le code QR qui suit vous permet d'accéder aux autres dimensionnements qu'offre le logiciel de calcul FIRIKA® :

Armature nécessaire incombant au client

Pour assurer les valeurs de résistance indiquées pour les consoles isolantes FIRIKA®, il incombe au client de prévoir et de poser une armature conformément aux instructions suivantes :

Effort tranchant V _{Ed}	Armature d'étrier nécessaire a _{sw, erf}
140 kN/m	251 mm²/m (08mm, s=200mm)
190 kN/m	335 mm²/m (08mm, s=150mm)
220 kN/m	393 mm²/m (&10mm, s=200mm)
300 kN/m	523 mm²/m (010mm, s=150mm)
450 kN/m	785 mm²/m (010mm, s=100mm)



Résistance aux actions horizontales

Les plaques en acier inoxydable coudées permettent à n'importe quel élément de raccordement FIRIKA® de reprendre les actions horizontales sans recourir à des éléments transversaux supplémentaires. Pour un dimensionnement détaillé, il est recommandé d'utiliser le logiciel de dimensionnement FIRIKA®.

Recommandation importante pour la modélisation FEM

Toutes les valeurs de résistance indiquées pour les éléments de raccord FIRIKA® se réfèrent au bord le plus sollicité de l'un des deux éléments structuraux en béton à relier. Il est donc recommandé de modéliser les efforts tranchants à l'aide d'un assemblage articulé ou d'un joint avec ressort de torsion sur le bord respectif de la dalle et de se référer au modèle statique.

Aptitude au service

Le moment d'inertie élevé de chaque étrier de support a un effet très favorable sur la ductilité et la résistance aux vibrations des consoles isolantes FIRIKA®. Les tableaux suivants indiquent les rigidités à la flexion et au cisaillement calculées de manière théorique :

Epaisseur du corps isolant 80 mm

		Rigidité à la flexion kφ [(kNm/m)/rad]									
TBH (cm)	Nombre d'étriers de support par m									Exécution	
	2 3 4 5 6 7 8 9 10						compacte				
11	2'000	3'000	4'100	5'100	6'100	7'100	8'100	9'100	10'200	10'200	
13	3'100	4'600	6'200	7'700	9'300	10'800	12'400	13'900	15'500	15'500	
15	4'400	6'700	8'900	11'100	13'300	15'600	17'800	20'000	22'200	22'200	
17	6'100	9'200	12'300	15'300	18'400	21'500	24'600	28'600	30'700	30'700	
19	8'200	12'300	16'400	20'500	24'600	28′700	32'800	36'900	41′000	41'000	

		Rigidité au cisaillement k _v [(kN/m)/m]									
TBH (cm)	Nombre d'étriers de support par m									Exécution	
	2	3	4	5	6	7	8	9	10	compacte	
11	540'000	810'000	1'080'000	1'350'000	1'620'000	1'890'000	2'160'000	2'430'000	2'700'000	2'700'000	
13	610'000	910'000	1'220'000	1′520′000	1'820'000	2'130'000	2'430'000	2'740'000	3'040'000	3'040'000	
15	680'000	1'010'000	1'350'000	1'690'000	2'030'000	2'360'000	2'700'000	3'040'000	3'380'000	3'380'000	
17	740'000	1'110'000	1'490'000	1'860'000	2'230'000	2'600'000	2'970'000	3'340'000	3'710'000	3'710'000	
19	810'000	1'220'000	1'620'000	2'030'000	2'430'000	2'840'000	3'240'000	3'650'000	4'050'000	4'050'000	

Épaisseur du corps isolant 120 mm

		Rigidité à la flexion kφ [(kNm/m)/rad]									
TBH (cm)	n) Nombre d'étriers de support par m									Exécution	
	2	3	4	5	6	7	8	9	10	compacte	
11	1′600	2'400	3'200	4'000	4'700	5'500	6'300	7'100	7'900	7'900	
13	2'400	3'600	4'800	6,000	7'200	8'400	9'600	10'800	12'000	12'000	
15	3'500	5'200	6'900	8'600	10'400	12'100	13'800	15'600	17'300	17'300	
17	4'800	7'200	9'500	11'900	14'300	16'700	19'100	21'500	23'900	23′900	
19	6'400	9'600	12'800	15'900	16'100	22'300	25'500	28'700	31'900	31'900	

		Rigidité au cisaillement k _v [(kN/m)/m]								
TBH (cm)	Nombre d'étriers de support par m									Exécution
	2 3 4 5 6 7 8 9 10						compacte			
11	420'000	630'000	840'000	1'050'000	1'260'000	1'470'000	1'680'000	1'890'000	2'100'000	2'100'000
13	470'000	710'000	950'000	1'180'000	1'400'000	1'650'000	1'890'000	2'130'000	2'360'000	2'360'000
15	530'000	790'000	1'050'000	1'300'000	1′580′000	1'840'000	2'100'000	2'360'000	2'630'000	2'630'000
17	580'000	870'000	1'160'000	1'400'000	1'730'000	2'020'000	2'310'000	2'600'000	2'890'000	2'890'000
19	630'000	950'000	1'260'000	1'580'000	1'890'000	2'200'000	2'520'000	2'840'000	2'150'000	2'150'000

Physique des ouvrages

Introduction

Les consoles isolantes FIRIKA® permettent de réduire les pertes de chaleur dues aux ponts thermiques liés aux matériaux et à la géométrie. En outre, les zones de raccordement qui ne sont pas isolées risquent de réduire la température de surface des éléments structuraux de manière considérable et d'augmenter ainsi le risque de condensation et de moisissures. Les consoles isolantes FIRIKA® permettent de bien répartir la température et de réduire les coûts de chauffage grâce à la faible conductivité thermique du matériau isolant qui est utilisé.

Le corps isolant des consoles isolantes FIRIKA® est composé de panneaux EPS ou, au choix, de panneaux XPS dotés d'une faible conductivité thermique de λ = 0,031 W/mK (EPS) ou λ = 0,036 W/mK (XPS) ou d'une laine de roche avec une conductivité thermique de λ ≤ 0,038 W/mK. Le corps isolant peut avoir deux épaisseurs : 80 ou 120 mm pour toutes les variantes.

Valeurs caractéristiques relatives à la stabilité physique des ouvrages

Les valeurs présentées dans le tableau ont été déterminées à l'aide des formules suivantes :

Conductivité thermique équivalente : λ_{eq} [W/mK] = $\Sigma \lambda_i A_i / \Sigma A_i$ $\lambda_{eq} = d_D / R_{eq}$

Résistance thermique équivalente : R_{eq} [m²K/W] = d_D / λ_{eq}

Ai = surface de la section des différents composants

d_D = épaisseur de l'isolant

λ_{eq} [W/mK] pour des hauteurs d'isolation de 16 à 24 cm

Matériau	Classe de résistance au feu		Nombre d'étriers de support								
isolant		2	3	4	5	6					
	R0	0,121	0,166	0,211	0,256	0,300					
EPS	REI60	0,136 ÷ 0,143	0,181 ÷ 0,188	0,226 ÷ 0,233	0,270 ÷ 0,278	0,315 ÷ 0,323					
	REI90	0,143 ÷ 0,154	0,188 ÷ 0,199	0,233 ÷ 0,244	0,278 ÷ 0,289	0,323 ÷ 0,334					
	R0	0,126	0,171	0,216	0,260	0,305					
XPS	REI60	0,140 ÷ 0,148	0,185 ÷ 0,192	0,230 ÷ 0,237	0,275 ÷ 0,282	0,320 ÷ 0,327					
	REI90	0,148 ÷ 0,158	0,192 ÷ 0,203	0,237 ÷ 0,248	0,282 ÷ 0,293	0,327 ÷ 0,338					
_aine de roche	REI120	0,128	0,173	0,218	0,262	0,307					

Matériau	Classe de		Nombre d'étri	ers de support	
isolant	résistance au feu	7	8	9	10
	R0	0,345	0,390	0,435	0,480
EPS	REI60	0,360 ÷ 0,368	0,405 ÷ 0,413	0,450 ÷ 0,458	0,495 ÷ 0,502
	REI90	0,368 ÷ 0,379	0,413 ÷ 0,424	0,458 ÷ 0,469	0,502 ÷ 0,514
	R0	0,350	0,395	0,440	0,485
XPS	REI60	0,365 ÷ 0,372	0,410 ÷ 0,417	0,455 ÷ 0,462	0,499 ÷ 0,507
	REI90	0,372 ÷ 0,383	0,417 ÷ 0,428	0,462 ÷ 0,473	0,507 ÷ 0,518
Laine de roche	REI120	0,352	0,397	0,442	0,487

Autres variantes sur demande

R_{eq} [m²K/W] - EPS

Hauteur d'isola-	Classe de		Nombre d'étriers de support											
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10			
Toutes les	RO (sans plaque de	8	0,662	0,483	0,380	0,313	0,266	0,232	0,205	0,184	0,167			
combinaisons	protection contre l'incendie)	12	0,993	0,724	0,570	0,470	0,399	0,347	0,307	0,276	0,250			

Hauteur d'isola-	Classe de		Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
	REI60 (avec plaque	8	0,559	0,425	0,343	0,288	0,248	0,218	0,194	0,175	0,159		
H = 16 cm	de protection contre l'incendie de 10 mm)	12	0,838	0,638	0,515	0,432	0,372	0,326	0,291	0,262	0,239		
TBH = 11 cm	REI90 (avec plaque	8	0,518	0,401	0,328	0,277	0,240	0,211	0,189	0,171	0,156		
	de protection contre l'incendie de 15 mm)	12	0,777	0,602	0,491	0,415	0,359	0,317	0,283	0,256	0,234		

Hauteur d'isola-	Classe de protection		Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
	REI60 (avec plaque	8	0,569	0,431	0,347	0,290	0,250	0,219	0,195	0,176	0,160		
H = 18 cm	de protection contre l'incendie de 10 mm)	12	0,853	0,647	0,521	0,436	0,375	0,329	0,293	0,264	0,240		
TBH = 13 cm	REI90 (avec plaque	8	0,531	0,409	0,333	0,280	0,242	0,213	0,190	0,172	0,157		
	de protection contre l'incendie de 15 mm)	12	0,797	0,614	0,499	0,421	0,363	0,320	0,286	0,258	0,235		

Hauteur d'isola-	Classe de		Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
	REI60 (avec plaque	8	0,577	0,436	0,350	0,293	0,251	0,220	0,196	0,177	0,161		
H = 20 cm	de protection contre l'incendie de 10 mm)	12	0,865	0,654	0,525	0,439	0,377	0,330	0,294	0,265	0,241		
TBH = 15 cm	REI90 (avec plaque	8	0,542	0,415	0,337	0,283	0,244	0,215	0,192	0,173	0,158		
	de protection contre l'incendie de 15 mm)	12	0,813	0,623	0,505	0,425	0,367	0,322	0,288	0,260	0,237		

Hauteur d'isola-	Classe de		Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
	REI60 (avec plaque	8	0,584	0,440	0,353	0,294	0,253	0,221	0,197	0,177	0,161		
H = 22 cm	de protection contre l'incendie de 10 mm)	12	0,875	0,659	0,529	0,441	0,379	0,332	0,295	0,266	0,242		
TBH = 17 cm	REI90 (avec plaque	8	0,551	0,421	0,340	0,286	0,246	0,216	0,193	0,174	0,159		
de protection contre l'incendie de 15 mm)	12	0,826	0,631	0,511	0,429	0,369	0,325	0,289	0,261	0,238			

Hauteur d'isola-	Classe de		Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
	REI60 (avec plaque de protection contre	8	0,589	0,443	0,355	0,296	0,254	0,222	0,197	0,178	0,162		
H = 24 cm	l'incendie de 10 mm)	12	0,884	0,664	0,532	0,444	0,381	0,333	0,296	0,267	0,242		
TBH = 19 cm	REI90 (avec plaque	8	0,559	0,425	0,343	0,288	0,248	0,218	0,194	0,175	0,159		
	de protection contre l'incendie de 15 mm)	12	0,838	0,638	0,515	0,432	0,372	0,326	0,291	0,262	0,239		

Autres variantes sur demande

R_{eq} [m²K/W] - XPS

Hauteur d'isola-	Classe de		Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
Toutes les	R0 (sans plaque de	8	0,636	0,469	0,371	0,307	0,262	0,228	0,202	0,182	0,165		
combinaisons	protection contre l'incendie)	12	0,954	0,703	0,557	0,461	0,393	0,343	0,304	0,273	0,247		

Hauteur d'isola-	Classe de		Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
	REI60 (avec plaque	8	0,542	0,416	0,337	0,283	0,245	0,215	0,192	0,173	0,158		
H = 16 cm	de protection contre l'incendie de 10 mm)	12	0,813	0,624	0,506	0,425	0,367	0,323	0,288	0,260	0,237		
TBH = 11 cm	REI90 (avec plaque de protection contre l'incendie de 15 mm)	8	0,505	0,394	0,322	0,273	0,237	0,209	0,187	0,169	0,155		
		12	0,758	0,590	0,483	0,409	0,355	0,313	0,281	0,254	0,232		

Hauteur d'isola-	Classe de	d (am)	Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
	REI60 (avec plaque	8	0,551	0,421	0,341	0,286	0,246	0,216	0,193	0,174	0,159		
H = 18 cm	de protection contre l'incendie de 10 mm)	12	0,827	0,632	0,511	0,429	0,370	0,325	0,290	0,261	0,238		
TBH = 13 cm	REI90 (avec plaque	8	0,517	0,401	0,327	0,276	0,239	0,211	0,189	0,171	0,156		
	de protection contre l'incendie de 15 mm)	12	0,775	0,601	0,491	0,415	0,359	0,316	0,283	0,256	0,233		

Hauteur d'isola-	Classe de		Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
	REI60 (avec plaque	8	0,559	0,425	0,343	0,288	0,248	0,218	0,194	0,175	0,159		
H = 20 cm	de protection contre l'incendie de 10 mm)	12	0,838	0,638	0,515	0,432	0,372	0,326	0,291	0,262	0,239		
TBH = 15 cm	REI90 (avec plaque	8	0,527	0,407	0,331	0,279	0,241	0,213	0,190	0,172	0,157		
	de protection contre l'incendie de 15 mm)	12	0,790	0,610	0,497	0,419	0,362	0,319	0,285	0,257	0,235		

Hauteur d'isola-	Classe de		Nombre d'étriers de support										
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10		
	REI60 (avec plaque	8	0,565	0,429	0,346	0,290	0,249	0,219	0,195	0,175	0,160		
H = 22 cm	de protection contre l'incendie de 10 mm)	12	0,847	0,643	0,519	0,434	0,374	0,328	0,292	0,263	0,240		
TBH = 17 cm	REI90 (avec plaque	8	0,535	0,412	0,334	0,282	0,243	0,214	0,191	0,173	0,157		
	de protection contre l'incendie de 15 mm)	12	0,803	0,617	0,501	0,422	0,365	0,321	0,286	0,259	0,236		

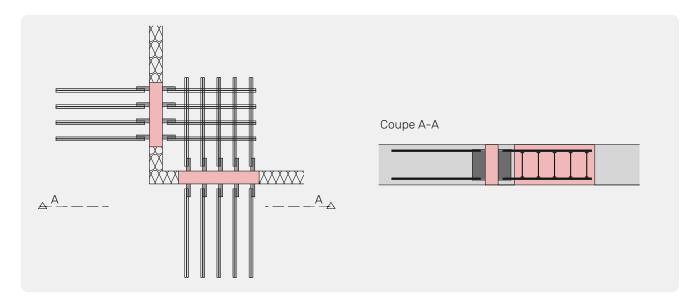
Hauteur d'isola-	Classe de		Nombre d'étriers de support									
tion/ hauteur de l'étrier porteur	protection incendie	d₀ (cm)	2	3	4	5	6	7	8	9	10	
	REI60 (avec plaque de protection contre	8	0,570	0,432	0,348	0,291	0,250	0,219	0,195	0,176	0,160	
H = 24 cm	l'incendie de 10 mm)	12	0,855	0,648	0,522	0,436	0,375	0,329	0,293	0,264	0,240	
TBH = 19 cm	REI90 (avec plaque	8	0,542	0,416	0,337	0,283	0,245	0,215	0,192	0,173	0,158	
	de protection contre l'incendie de 15 mm)	12	0,813	0,624	0,506	0,425	0,367	0,323	0,288	0,260	0,237	

Autres variantes sur demande

R_{eq} [m²K/W] - Laine de roche

Hauteur d'isola- tion/ hauteur de l'étrier porteur	Classe de protection incendie	d₀ (cm)	Nombre d'étriers de support								
			2	3	4	5	6	7	8	9	10
Toutes les combinaisons	REI120 (Laine de roche sans plaque de protection contre l'incendie)	8	0,626	0,463	0,368	0,305	0,260	0,227	0,201	0,181	0,164
		12	0,939	0,695	0,552	0,457	0,390	0,341	0,302	0,272	0,246

Autres variantes sur demande

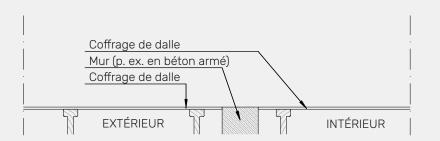

Construction et instructions de montage

Joints de dilatation

Pour les dalles en porte-à-faux et les dalles de terrasse, les joints de dilatation doivent être disposés à une distance maximale de 12 m. En fonction de la sollicitation et de la situation de montage, il est possible de définir, en concertation avec le service après-vente technique, des espacements plus importants pour les joints de dilatation.

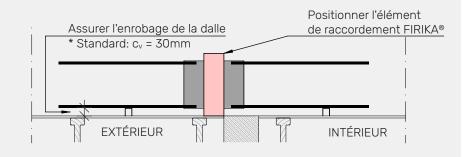
Coins

L'utilisation d'éléments de hauteur différente permet de parer aux conflits dans les coins sans avoir recours à des éléments d'angle spéciaux ou à des mesures particulières.

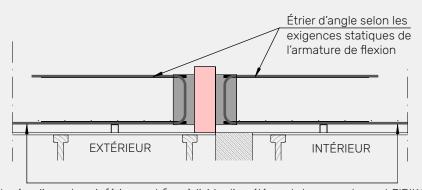


Instructions de montage

1 Coffrage

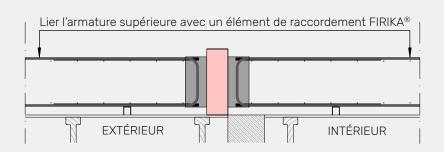

Avant de monter les consoles isolantes FIRIKA®, il convient de réaliser le coffrage de toute la dalle, en tenant compte des contre-flèches correspondantes.

2 Pose des consoles isolantes FIRIKA®

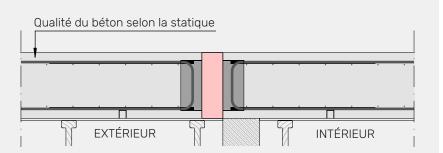

Lors de l'installation des consoles isolantes FIRIKA®, il faudra s'assurer que l'enrobage des armatures requis est bien maintenu en place.

L'enrobage de raccordement standard des étriers de support des consoles isolantes sera d'au moins 30mm. Les consoles isolantes FIRIKA® devront être installées dans la position correcte conformément au plan ou aux instructions figurant sur les étiquettes.

3 Armature inférieure et étriers


Poser l'armature inférieure et les étriers d'angle conformément au plan d'armature. Afin d'assurer l'enrobage des armatures requis, l'armature inférieure devra être placée sur les pieds inférieurs des étriers de supports FIRIKA®. Les barres transversales sont des barres de montages qui n'assurent aucune fonction statique peuvent être coupées sur chantier en cas de besoin.

Insérer l'armature inférieure et fixer à l'aide d'un élément de raccordement FIRIKA®


4 Armature supérieure

Poser l'armature supérieure conformément au plan d'armature. Cette armature pourra prendre la forme de barres droites ou de treillis d'armature.

5 Bétonnage

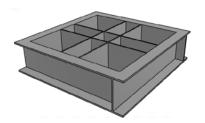
Afin de garantir la stabilité positionnelle des consoles isolantes FIRIKA®, il convient d'assurer un remplissage et un compactage uniformes durant le bétonnage. Il est recommandé de bien fixer les consoles isolantes FIRIKA®.

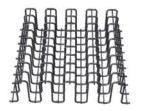
Fischer Rista AG FIRIKA®

Service et conseils

Notre équipe d'ingénieurs du service de développement se tient à votre disposition si vous avez des questions spécifiques quant au dimensionnement et à l'utilisation du système FIRIKA®.

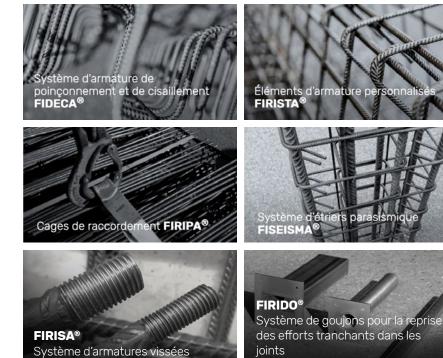
E-Mail verkauf@fischer-rista.ch


ns spécifiques quant au dimensionnement et à l'utilisation


Telefon +41 62 288 15 75

Fischer Rista AG Hauptstrasse 90 CH-5734 Reinach

Planification numérique BIM


Notre catalogue BIM permet de configurer tous les produits et de télécharger les données dans différents formats de fichiers.

Aperçu de la gamme

